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2. Project abstract: 
 
Artificial neural networks represent a key component of neuro-inspired computing for non-Boolean 
computational tasks. They emulate the brain by using nonlinear elements acting as neurons that are 
interconnected through artificial synapses. However, such physical implementations face two major 
challenges. First, interconnectivity is often constrained because of limits in lithography techniques and 
circuit architecture design; connections are limited to 100s, compared with 10000s in the human brain. 
Second, changing the weight of these individual interconnects dynamically requires additional memory 
elements attached to these links.  
 
Here, we propose an innovative architecture to circumvent these issues. It is based on the idea that 
dynamical hyperconnectivity can be implemented not in real space but in reciprocal or k-space. To 
demonstrate this novel approach, we have selected ferromagnetic nanostructures in which 
populations of spin waves – the elementary excitations – play the role of neurons. The key feature of 
magnetization dynamics is its strong nonlinearity, which, when coupled with external stimuli like 
applied fields and currents, translates into two useful features: (i) nonlinear interactions through 
exchange and dipole dipole interactions couple potentially all spin wave modes together, thereby 
creating high connectivity; (ii) the strength of the coupling depends on the population of each k mode, 
thereby allowing for synaptic weights to be modified dynamically. The breakthrough concept here is 
that real-space interconnections are not necessary to achieve hyper-connectivity or reconfigurable 
synaptic weights.  
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The final goal is to provide a proof-of-concept of a k-space neural network based on interacting spin 
waves in low-loss materials such as yttrium iron garnet (YIG). The relevant spin wave eigenmodes are 
in the GHz range and can be accessed by microwave fields and spin-orbit torques to achieve k-space 
Neural computation with magnEtic excitations. 

 

3. Context and Summary 
 

The role of deliverable D4.2 is to identify the different application tasks where k-NET can be a game 
changer and to draw perspectives to investigate them. It also addresses part of the evaluation 
committee interrogations that has been raised about the content of D4.1 at the first review meeting 
which were written as: 

"The report D4.1 should be amended to include: 1) A basic NN market survey, describing available 
technology and the challenges it faces 2)Areas that would need to be addressed in order to 
commercialize a successful k-NET implementation (specifications that need to be met, integration 
within existing technology) 3)Possible commercial applications for k-NET (beyond the prototype) 
4)Clear benchmarking criteria for the k-NET prototype, based on point 3). These can be done by adding 
supplementary sections or by reshuffling existing sections. This should be implemented, and the report 
resubmitted by month 19 (30 Jun 2022, same time as D4.2)” 

Deliverable 4.2 should be read as a separate but logically articulated continuation of Deliverable 4.1. 
In D4.1, we draw an overview of the alternative technologies to the k-NET approach, i.e., the physical 
implementations of neuromorphic approaches. D4.1 thus provided an analysis of the technologically 
relevant paths with strong economic potential. Within the context of k-NET and 2 years after 
submission we could conclude on the relevance of the approaches that we proposed. More specifically, 
an important point relevant to k-NET is that neuromorphic devices based on magnetization dynamics 
have been doing significant progress and they are among the few contenders for large scale 
integration. Even so, the specific approach proposed in k-NET remains unique in all its aspects as it was 
at the date of submission. To conclude, in D4.1 we stated that the next step would be to provide a 
clear focus on the pathway that will provide the ground for k-NET economical potential. Here, D4.2 
explores how the different methodologies that are recognized to be relevant for neuromorphic 
technologies can be implemented using k-NET concepts. In D4.2, we describe how to make focus on a 
classical use case “spoken vowel recognition” that can be implemented within the time frame of k-NET 
as an exemplary proof-of-concept demonstration.  Correspondingly, please note, that the generality 
of k-NET’s approach also can allow to perform other typical classification tasks in neuromorphic 
computing such as “handwritten digits recognition” as well. The future k-NET chips could thus be used 
for different task in neuromorphic computing, which also enforces k-NETs potential for the 
neuromorphic computing market in the next decade (cf. section on the market analysis).  

In this context, D4.2 furthermore extrapolates the economic impact of k-NET approaches and 
compares it to the extrapolated impacts of competing approaches. It sets the scene for the 
environment in which k-NET will evolve, focusing not only on the hardware part but also on 
applications and software trends. In particular, this section mentions the main market players and 
drivers, the threats and opportunities for k-NET. 

In the light of the Deliverable 4.1 and 4.2, it is shown that several technologically and commercially 
credible development schemes exist. In the short and medium term, the chosen approach of focusing 
on spoken vowel recognition is very relevant for two reasons: there are direct commercial applications 
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for this use-case with significant potential and it is a use-case that can be easily extrapolated for future 
longer-term research if successful. 

• Purpose of the document: 

 
The document has one main objective which is to provide tangible and up-to-date elements that allow 
the initiation of the technology development phase in alignment with the wider operational objectives 
of the project. Namely, to enable a TRL increase, but also to match the market needs and find a 
positioning that can lead to commercialisation. 

It is indeed crucial to define an ambitious but realistic path with a vision that fits with the consortium's 
ability to achieve within the timeframe of the project a first step towards the development of a ready 
for the market magnonic neuromorphic technology.  

In addition to guiding the choice of the proof of concept and selecting, for example, the elements to 
be compared as a priority (and therefore on which it is important to concentrate efforts), this 
document is a pivot of the exploitation strategy. The more detailed knowledge of the competitive 
environment and market players provides a complete vision of the potential stakeholders and how to 
address them. In a very practical way, it can be used, for example, to find out who to contact, which 
partnerships to consider or to prepare the end-user’s workshop. 

This document is therefore primarily intended for the members of the consortium. It provides a shared 
vision and factual arguments for arbitrating the various choices to be made during the project. 

But it also allows these same elements to be shared with the other actors involved in the project. On 
the one hand, the Commission and the reviewers (in particular the innovation radar expert), and on 
the other hand the members of the Exploitation Committee. Thanks to this document, the latter can 
have more information, but they can also better understand the elements on which the consortium 
bases its choice of development and exploitation strategy. They will therefore be able to provide more 
relevant and appropriate feedback to initiate a collaborative and iterative approach. 

Indeed, if this document is a real keystone, it remains only a first step in the exploitation strategy. It 
can and must continue to evolve according to the comments made by the experts, the changes in the 
context in which the project is evolving or the successes and failures of the development of the 
technology. 

These evolutions can in particular be considered in the next communication, dissemination and 
exploitation plans. 

4. Magnetic materials based neuromorphic proof of concepts 
4.1 Theoretical proposal 
Over the past few years, a number of theoretical proposals have been put forward to use magnetic 
materials and spintronics for neuromorphic computing. Many of these are based on the concept of 
physical reservoir computing, which seeks to harness the nonlinearity and recurrence inherent to 
dynamical systems as a physical resource for computation. In general terms, the reservoir computing 
approach offers a straightforward way to use recurrent neural networks by performing training only 
on the outputs of the network. A number of proposals are based on arrays of coupled spintronic 
devices, such as spin-torque nano-oscillators (STNOs) [1], [2], superparamagnetic magnetic tunnel 
junctions (MTJs) [3], and artificial spin ice [4]. These represent a natural spatial implementation of a 
recurrent neural network, where each device or node plays the role of a neuron. However, coupling 
between nodes typically occurs through dipolar interactions, which represent an all-to-all coupling and 
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are set by the geometrical layout of the device array. For the STNO arrays, standard reservoir 
computing benchmarks such as short-term memory (STM) and parity check (PC) have been performed 
[1], along with tasks such as handwritten digit recognition and nonlinear time series prediction [2]. For 
the implementation involving superparamagnetic MTJs, it is proposed that voltage-control of the 
magnetic anisotropy can offer an additional handle to set the state of the elements. Here, a nonlinear 
time series prediction task (NARMA10) has also been demonstrated [3]. STM and PC tasks have also 
been demonstrated for artificial spin ice systems, which exhibit geometrical frustration in addition to 
dipolar coupling between elements [4]. Instead of using interconnected devices, other proposed 
schemes use nonuniform magnetic textures as the physical “substrate” for reservoir computing. One 
example relies on random skyrmion textures [5], whereby electrical currents flow through the textures 
to provide a nonlinear response to inputs, which occurs through a combination of spin torques and 
anisotropic magnetoresistance (as the readout). The performance of the reservoir is tested using a 
pattern recognition task based on sequences of sine and square waveforms, where both spatial and 
temporal multiplexing of the outputs are studied. This idea has recently been extended to simpler 
stripe domain structures, where it has been shown that 4-pixel pattern recognition tasks can be 
performed [6]. Another involves spin waves propagating through a stripe domain structure [7], which 
provide a nonlinear transformation of the input spin wave spectrum. It is shown that such a system 
can be used to perform temporal XOR tasks. 

A number of other proposals also rely on spin waves for computation, as is the case in the k-NET 
project. One of the earlier proposals focused YIG films with different input and output contacts [8], [9]. 
Wave interference patterns generated by several input excitation sources, which are subsequently 
detected using different detector arrangements, can be used with machine learning to reconstruct 
input signals. Another approach (by one member of k-NET consortium)  more closely resembles a 
feedforward neural network, which involves propagating spin waves through a uniformly-magnetised 
medium over which an array of nanomagnets is present [10]. Each nanomagnet generates a stray 
dipolar field on the magnetic film, and training is used to induce particular interference patterns to 
match a desired output. It is shown that this system can perform frequency separation and vowel 
recognition.  

Other studies have also appeared where the focus is on the performance of single devices. In one 
example, the transition between chaotic and nonchaotic dynamics is explored as a resource for 
reservoir computing [11] where it is shown that nonlinear time series prediction (NARMA2) can be 
performed. A similar analysis is performed for a voltage-controlled MTJ, where the transient dynamics 
within a macrospin approximation is used to perform similar nonlinear time series prediction [12]. 
Finally, the spiking dynamics of spin-Hall nano-oscillators (SHNOs) have also been investigated through 
simulation for neuromorphic computing [13] . This work represents a more traditional approach in 
which conditions under which spiking neurons can be combined together for basic neural network 
behaviour are investigated. Such oscillators are shown to be interesting building blocks for such 
architectures. 

4.2 Experimental implementations: 

While theoretical proposals on neuromorphic computing with magnetic and spintronic devices are 
numerous, the same cannot be said for actual experimental implementations of which only a handful 
has been reported in the literature to date. The first clear demonstration employed a single magnetic 
vortex nano-oscillator, based on a magnetic tunnel junction, where the amplitude dynamics of the 
oscillator signal is used as a physical resource for reservoir computing [14]. The amplitude dynamics 
was chosen as it is more robust to noise compared with phase dynamics. It was shown that the nano-



 

 

- 8 - 

oscillator can result in spoken-digit recognition rates exceeding 80% with spectrogram filtering and 
95% with cochlear filtering. 

 

By using an array of such vortex nano-oscillators, coupled together through dipolar interactions, it has 
been shown that tasks such as vowel recognition can also be performed [15]. Instead of using a pure 
reservoir computing approach, where training is only performed on the outputs, here the 
synchronization patterns of the coupled oscillators are tuned to provide sufficient separation in order 
to perform the vowel recognition tasks. It therefore represents an approach closer to training a neural 
network, albeit a simplistic one with only four coupled oscillators. Nevertheless, recognition rates 
exceeding 80% can be achieved. 

Another successful experimental implementation relies on the time delay architecture for reservoir 
computing, where an active delay line with feedback is used to reconstruct a network of virtual nodes 
in the time domain, rather than in space. The implementation consists of an active ring oscillator based 
on propagating spin waves in a yttrium iron garnet system, where the delayed feedback dynamics are 
used to provide fading memory and recurrence [16]. As in the theoretical studies discussed above, it 
is shown that this system performs well in standard benchmarks such as STM and PC. 

Finally, artificial spin ice has also been shown to be an effective reservoir. In this work, the size of the 
nanoelements comprising the ice structure is chosen such that the macrospin and vortex ground states 
are both metastable states. Each of these states couple differently to one another, with Ising-like 
behaviour exhibited by the macrospin states, while vortices minimize stray dipolar fields that results 
in weaker coupling. This results in nontrivial phenomena such as ratchet-like vortex injection and 
history-dependent nonlinear fading memory, features that are harnessed for computation. 
Interestingly, the macrospin and vortex states possess distinct microwave responses to excitation 
fields, which allows a spin wave “fingerprinting” to be used as an effective readout mechanism. It is 
shown that such a system can be used for nonlinear time series prediction. 

5. Overview about k-NET from a technological perspective 
5.1 General overview on k-NETs operating principle 

 

Figure 1:  k-NET advantages and type of envisioned operation in a nutshell 

As can be also found in more detail in the first project review report and specific deliverables the typical 
k-NET system looks like schematically shown in Figure 1 for the most generic concept and more 
concretely displayed in Figure 2. The k-NET technology uses simple devices based on a single small 
microstructure in the micrometer range made of LPE grown Yttrium Iron Garnet (YIG). In these 
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confined geometries the spin wave (SW) modes are quantized and form a discrete set of modes with 
different wavevectors labeled with the mode-index k. In k-NET, these discrete spin wave modes serve 
as the neurons. This is also schematically shown for a set of selected modes in Figure 2.  

 

Figure 2: Illustration of the k-NET neuromorphic network in k-space for eight selected modes for better visibility. The synaptic 
weight of each mode in this ensemble is characterized by the individual spin wave amplitude (occupation number where the 
underscore indicated the mode number found in experiments and simulations. The amplitude distribution is only a schematic 
example to illustrate the principle and not deduced from a specific measurement here.) 

In the linear regime, these modes are independent from each other and do not interact. However, to 
realize a neuromorphic network (NN), synapses that is the couplings between theses discrete sets of 
modes need are required. Furthermore, the synaptic weight needs to be controlled, to control the 
channeling of information as the basic ingredient to program a neural network.  

This is possible by operating in the nonlinear regime, where the spin wave modes are mutually coupled 
and hence undergo nonlinear interactions. The synaptic weight can be changed by altering the 
populations per spin wave mode. Most of the modes in k-space are short wavelength modes which 
cannot be excited by common inductive techniques. Instead, the magnon modes are excited by means 
of parametric pumping. In the nonlinear regime, the short-wavelength modes are coupled to the 
uniform precession modes of ferromagnetic resonance (k=0).  That uniform mode is excited by the ac 
magnetic field generated by induction from radio frequency antennae either on top of or in close 
vicinity to the YIG microstructure with a frequency 𝜔!. In the nonlinear regime, SW instabilities occur 
if the pumping amplitude exceeds a specific threshold value. At this threshold, the energy pumped into 
these discrete spin wave modes (at 𝜔±#! = 𝜔!/2) compensates the spin wave losses of these modes 
and the individual spin wave’s mode population grows exponentially. A change in the pumping 
frequencies has also an impact on the individual population of each mode in the discrete SW mode 
spectrum in k-space as we are also going to discuss in the proposed methods to realize the first k-NET 
proof-of-concept device.  

5.2 First results for the k-NET proof of concept device 

Referring to the realization of the excitation of our spin wave mode set, in the first generation of the 
k-NET sample, the choice of the antennae shape should also enable to either control the in-plane or 
the out-of-plane dynamic component of the time dependent magnetic field. Thus, different shapes of 
antennae were employed in the first generation of a k-NET sample as well as differently sized YIG micro 
disks to narrow on the optimal design of a first proof-of-concept device.  
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Note, that three different types of measurement techniques were utilized to characterize the first 
generation of the k-NET devices (see Figure 3). These techniques are vector-network analysis 
ferromagnetic resonance (VNA-FMR), micro-focused Brillouin- light scattering (µ-BLS) and magnetic 
resonance force microscopy (MRFM), which is employed by different partners of the consortium.  

 

Figure 3: Schematics of the employed measurement techniques (a) Magnetic resonance force microscopy (MRFM) (b) Micro 
focused Brillouin light scattering (BLS) (c) Electrical detection: Propagative spin wave spectroscopy 

Peculiar requirements for each experimental approach require each slight modifications of the basic 
k-NET sample design, which is reflected in the different layouts,  

The agreement between simulations of the magnon modes in the YIG disks and the experimental 
observation at the predicted frequencies is excellent (see Figure 4).  This shows the ability of the 
consortium to reliably predict not only the system ground state but also most of its non-linear 
dynamics, enabling the future possibility to emulate device operations. The magnon modes in the YIG 
disks are parametrically pumped with a frequency 2f1, for instance. The system operates then in the 
nonlinear regime either in with shallow nonlinearity or in a deep nonlinear regime where mode 
coupling dominates. In this regime, we experimentally observed the appearance of new resonance 
peaks depending on the frequency and power which characteristic of an energy flow from the excited 
modes to other modes within the same YIG disk.  In terms of a neuromorphic network, such as the 
perceptron, the individual spin wave amplitudes depend on the frequency of the parametric drive. 
Thus, this dependence gives the central ability to change the synaptic weights- here in form of the 
specific spin wave amplitudes. In turn, speaking in terms of a neuromorphic network we are able to 
perform the training for the desired classification tasks with k-NET.  

In principle, using the simulations, we can precisely identify the interacting modes seen in the 
experiments and the strength of the mode coupling, enabling to identify approaches to address them 
selectively.   However, although it is theoretically possible, it is not practical to attempt to address a 
large number of individual modes within the magnon manifold at this stage.  Preliminary 
measurements with two parametric drives at different frequencies show that the amplitude can be 
varied of each resonance, but the variation is currently addressed on all excited modes in the 
ensemble. 
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Figure 4: Results from the first generation of a k-NET using parametric pumping. We show the different antennae schematics 
(a) used or the different experimental setups and measurements techniques. Result from BLS measurements ((b)-(c)), MRFM 
measurements with one parametric frequency input ((d)-(e)) and micromagnetic simulations (f).  

Thus, for a first k-NET proof-of-concept device, we will rather address the simultaneously excited 
modes at different frequencies all together. Specifically, we will address the entire relative amplitude 
distribution (magnon mode populations) within in one ensemble (see also the following paragraph and 
Figures 5-6). This is also eases the implementation of a future k-NET device as it again requires much 
less interconnections and decreases the device’s complexity.  

5.3 Proposed implementation of k-NET concept for neuromorphic computing 

To date, two different feasible approaches can be envisaged to change that amplitude distribution 
which is A. an “All parametric, nonlinear interacting” or B. “Parametric but with linear control 
knobs”. They will be explained in more detail in the following paragraph. Notably, they have both in 
common that as said above we treat one ensemble of parametrically excited, nonlinearly interacting 
spin wave modes as a set. The application of approach specific control knobs allows then to change 
the distribution of the synaptic weights, i.e., the individual spin wave amplitudes within this ensemble.  
In turn such change of the synaptic weight enables the training of our k-NET neural network. Note, 
that although we treat all the excited spin wave modes as a set, the dynamic control of the synaptic 
weight results in a “recurrent” neural network. This is in stark contrast to other emerging approaches 
for neuromorphic computing with spin waves in k-space, which are all based on reservoir computing.   

A.  “All-parametric “ 

In this all-parametric approach, we excite our magnon modes in the YIG disk   into the nonlinear regime 
by performing simultaneous parametric pumping at different frequencies (see Figure 5). Ultimately, 
one will obtain a third subset- corresponding to the amplitude distribution of the modes. This is 
precisely the principle of a perceptron and more general a neural network. If then we input two 
(eventually N) different parametric sets of frequencies with different amplitude distribution, the two 
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(N) sets will excite specific sets of magnons modes that will interact nonlinearly with each other and 
result in another, new distribution. This principle is also schematically depicted in Figure 5. A single 
input of the k-NET device, is therefore a power spectrum Si. In the present all-parametric scheme of 
excitation, the frequencies component (2fi) are to address magnons modes at half their frequency. 

 

Figure 5: Principle to change the synaptic weight in a k-NET based neural network by letting two (later N) magnon distributions 
parametrically pumped at two (N) different frequencies interact with each other. These interactions- in the nonlinear regime- 
will change the overall distribution of the amplitudes per populated mode and hence the synaptic weight which will allow for 
training.    

B: “Parametric programing with linear inputs” 

This approach also relies on entering the nonlinear regime by parametric pumping. However, here the 
idea is to only use a single input frequency for the parametric pumping process to excite the spin wave 
modes in the YIG disk. (e.g., 2fp). That will put the system in the desired non-linear dynamical states 
with individual mode amplitudes, that is the synaptic weights depending on the choice of the value for 
2fp. Then, to perform the targeted computation, additional single frequencies f1, f2 which are 
corresponding to selected resonance frequencies within the set of excited discrete spin wave modes, 
will be fed additionally to the system. This additional drive in the linear regime will have a direct impact 
on the values of the demagnetizing field.  Correspondingly, the effective magnetic field acting on the 
spin wave modes will change by addressing one specific frequency. As a result, the amplitude 
distribution of the spin wave manifold originating from the parametric pumping will change across the 
frequencies. Further, reading the output will be performed by observing the modification of 
amplitude of specific frequencies that are different from the input frequencies. 

Beyond monitoring the spin wave amplitudes, themselves with the known techniques (see Figure 4), 
another possibility to experimentally observe this type of modulation of the spin wave mode ensemble 
could be to investigate the response in the time domain of a single YIG disk as well. For instance, a 
sequence of RF pulses – with different frequencies – in the said linear regime would alter the response 
and hence allow to obtain insight into the programmability of our neural network with k-NET as well.   

Here the parametric excitation consists of burst of RF pulse sequences that can be envisioned as the 
programing signal. The inputs of the k-NET device are then feed as frequencies (fi) that resonate with 
modes (i) of the dynamical excited state.  Compared to the first approach with two parametric drives, 
in this computation scheme, the spin wave amplitudes are then rather changed by using additional RF 
inputs (several frequencies in the linear regime). Specifically, this occurs at specific frequencies which 
are within the spin wave frequencies of the parametrically pumped system (see Figure 6). 
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Figure 5: Schematics of the second proposed approach of k-NET: The short-wavelength modes are excited by parametric 
pumping with a frequency 2fp and are nonlinearly interacting with each other. An additional RF input with frequencies which 
corresponds to the individual resonance frequencies f1, …, fn of the total set of excited spin wave modes. These frequencies 
are in the linear regime and impact the demagnetizing field of the addressed spin wave mode and hence alter the effective 
magnetic field. In turn the amplitude per spin wave modes can be varied and hence the synaptic weights of our neural network 
changed.   

5.4 Benchmarking methodology for k-NET proof of concept 

For the future benchmark methodology, we will have to assess our proof-of-concept device on A. the 
comparability to existing approaches such as spintronic based approaches using STNO’s and B. the 
uniqueness of k-NETs approach with respect on a large-scale integration. This large-scale integration 
assessment will be of course based on our experimental results and include remarks towards the 
scalability, device yield, the potential for the CMOS integration and economical aspects. The first 
market analysis which is part of this deliverable D4.2 contributes to it and serves as a first placement 
of the k-NET technology as well.   Thus, at this stage of the project we can already prepare the final 
benchmarking. This is done by reporting on the first experimental results on changing the synaptic 
weights and how – based on that- we can identify one possible (of several ones, see below) 
classification task to perform the first proof-of-concept demonstration. As detailed out further, this 
will be vowel recognition.  

5.5 First experimental evidence for the change of the synaptic weights 

Example of measurements with a 3 µm (diameter) disk using approach A.  

In the consortium, we have already started to perform first measurements using the MRFM technique 
on approach A using two parametric drives at frequency inputs 2f1 and 2f2 on a YIG disk of 3 µm 
diameter (Figure 7 (a)).  Please note, that a change in the RF power also impacts the spin wave 
amplitudes, thus these measurements were performed both for the same power P=P(f1)=P(f2) (Figure 
7 (b)) and subsequently for different powers (Figure 7 (c)). The spectra were obtained at a fixed 
externally applied field of 26.6 mT for the data shown in Figure 7 (a).  

In Figure 7 we show experimental evidence (from MRFM measurements) that using two parametric 
frequencies (f1, f2) is enough to both change the spin wave amplitudes (Figure 7 (b).)  and to generate 
a response at other frequencies (Figure 7 (c)). Furthermore, this non-linear response is strongly 
dependent on the power of the excitation as can be observed by comparing Figure 7 (d) (low power) 
and Figure 7 (e) (high power).  
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Notably, one can also observe as conceptually explained before, that this type of experiments allows 
to change the amplitude of some spin wave modes in the disk and hence the synaptic weights.).  

 

  

 

 

This experimental evidence demonstrates that we already have all the ingredients to perform a 
classification task for a neural network based on k-NET. By shifting the operation from real space to 
wavevector space, k-NET is not only a new hardware concept but also represents a generic paradigm 
shift for neuromorphic computing. As such, k-NETs approach can be in principle be applied to different 
classification tasks for neuromorphic computing ranging from handwritten digits recognition (cf. 
original proposal), pattern (image) recognition or vowel recognition. For instance, different 
handwritten digits could be assigned to different outputs using either proposed method A. or B., to 
perform the training. However, within the project one goal is to present a proof-of-concept for k-NET’s 
operation. As we work naturally with a frequency distribution which can be tuned by the input 
frequencies, the power etc. (see previous section), currently the most straight forward approach is to 
demonstrate the proof-of-concept operation with vowel recognition. Other classification tasks are 
foreseen further down in the future. Vowel recognition directly operates with the frequencies and 
does not require any prior assignment such as for handwritten digits recognition. Furthermore, our 
spectra show similarities with the spintronic based approach using spin-torque nanooscillators from 
[15]. This- although operating in real space- is compared to other technologies (cf. Overview given in 
D4.1)- the one which resembles most. Thus, it will also allow us to perform the future benchmarking 
on another concrete example which can use to assess our technology. Then, the system’s second 
generation could be also envisioned for other, more complex classification tasks, within the timeframe 
of the k-NET project.  

Thus, together with the experimental evidence at hand we are confident that vowel recognition could 
be achieved with k-NET technology and will pursue this approach to make a first proof-of-concept 
demonstration that k-NET can be a game changer for neuromorphic technology.  

5.6 Methodology for k-NET based vowel recognition proof of concept 

Spoken vowels are characterized by formants. Formants are acoustic resonances in the vocal tract, 
that corresponds to the dominant spectral peaks at distinct frequencies in the spectrum envelope of a 
recorded voice. Formants are especially prominent in vowels.  The lowest frequency of a formant is 
usually called F1, the second F2 and the third F3, however typically two formants are sufficient to 
identify the vowel.  Moreover, each formant is associated to a resonance in the vocal tract, that is 
different vowels for instance. The different formants such as different vowels are separated in 

Figure 6: First experimental evidence using MRFM spectroscopy that the magnon population can be changed by injection 
additional frequencies. (a) Schematics of the utilized micro disk (b) and (d) Excitation with parametric drive and two input 
frequencies at the same power. The application of two parametric drives with different power (c) and (e) yields also 
changes in the spin wave amplitudes. The line plots below the spectra ((b)-(e)) show the average of ten lowest applied 
frequencies f1 (blue line) and the same spectrum if only one parametric drive by turning off f1 is applied to the system 
(orange line).  
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frequency (approximately 1kHz separation, which is in a typical  range from 500 Hz – 3.5 kHz) and, for 
instance, characterized by twelve different frequencies (c.f. Ref. [15]). 

The first preliminary spectra using two frequencies f1 and f2 -parametrically driving the YIG disk- with 
the same or with different input power (e.g. see Figure 7 and Figure 8) show spectra which resemble 
the one of coupled spin-torque nanooscillators [17] . 

 

 

Figure 8: Qualitative similarity between the spectra from a system of four coupled STNOs used for vowel recognition1 and the 
first spectra from K-NET using two parametric drives 2f1 and 2f2.  

 Although, the approaches are conceptually different – four coupled STNOs vs. nonlinearly coupled 
spin wave modes in one micro disk and wavevector space operation (k-NET)-the shared physics of non-
linear magnetization dynamics based on the LLG equation allows to draw some analogies. Naturally, 
this also indicates that one can find a benchmark methodology for the first k-NET proof-of-concept 
device to demonstrate vowel recognition. Furthermore, it also allows a direct comparison not only to 
general approaches to neuromorphic computing but also to spin-based approaches for neuromorphic 
computing. This will further contribute to identify k-NETs technology as a game changer.  

Therefore, the concept which is proposed here, follows the experiment for vowel recognition from 
Ref. [15], while aiming to adapt to the specifications needs for k-NET  approach. An adaption during 
the process towards the final demonstrator will be made if necessary. However, the rich number of 
degrees of freedom to control the spin wave modes’ dispersions (& amplitudes) of the k-NET samples 
such as the externally applied field, the power, the exact geometrical size to name only a few, 
minimizes the risk drastically and allows for said, eventual adjustments.  

In the k-NET conjuncture, the spin wave modes that is k-NETs neurons operate at frequencies around 
3-4 GHz  from Ref but comparable to more recent works [18], [19].   As we currently envision to operate 
similarly to Ref. [15] to address the formants associated to the vowels, the input frequencies will 
require up conversion or need to be decomposed in  linear combinations of the number of frequencies 
which are used to characterize one vowel. 

For instance, Ref. [15] used a subset of the Hillenbrands database where twelve different frequencies 
characterize one vowel and in total 37 different female speakers pronounce seven vowels.  

Once the decomposition (linear combination) has been defined, the classification task for vowel 
recognition with k-NETs approach can be performed as schematically depicted in Figure 9.  
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Note, that here the schematics is using the “All-parametric” approach A but can also be replaced by 
approach B to use a linear input. The change is only in the way we control the spin wave amplitudes 
and resonance frequencies, the concept remains the same.  

Then, the result from that classification task will be compared to the spin-based result from Romera et 
al., standard neural networks and CMOS operation for parameters such as the classification efficiency 
or the energy consumption. This will also allow to benchmark the new technology against  

 

 

Figure 7: Concept for vowel recognition with k-NET for a future proof-of-concept device. (a) Comparison to a spin based 
neural network for vowel recognition employing four coupled spin-torque nano oscillators (STNOs)) (Romera et al., Ref. [1]). 
Each STNO acts as a neuron and is interconnected to two input frequencies which are used to map the output to the input and 
validate the successful training.  (b) Equivalent picture for the k-NET approach. However, here there is a “bath” of neurons as 
one neuron corresponds to one spin wave mode. No wiring accepts the individual frequency inputs (number of inputs 
corresponds to the number of vowels to be classified) is required. The spin wave modes undergo nonlinear interactions and 
when an additional frequency is turned on, first data from the CEA partner (courtesy G. Loubens) using the same power at 
both inputs show that the amplitudes and the resonance peaks change. This demonstrates that training the network is 
possible. Contrary to a single frequency, we assign one spectrum- specific distribution of the amplitude to each vowel with a 
corresponding frequency dominating the spectrum as a peak above a previously set threshold (c). This is contrary to the 
approach of Romera et al., we use the entire distribution in k-space and let it interact. We use this interaction for changing 
the individual weights but do not address one specific mode.  Then the threshold determines the frequency output which is 
compared to the desired input and classification is taking place. In an iterative process- that is using the backpropagation 
method, for instance- the task is performed until the maximal accuracy is reached.  
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existing approaches. The future experiments will allow to give some real numbers but already now 
some points can be pointed out which also underline the potential of k-NET. First, the comparison of 
the schematics of the neural network shown in Figure 9 (a) from Romera et al. and the one proposed 
for k-NET in the top part of Figure 9 (b) indicate clearly the strongly reduced number of wiring and 
interconnections. Further, only radio frequency inputs are required and no additional DC signals. This 
will allow A. smaller scales for a future chip and B. even less power consumption than the results 
from Romera et al.  

 

 

Figure 10: Vision of the k-NET device in form of a chip, exemplarily showing the classification task of vowel recognition for 
the proof-of-concept device. It can represent also a pre-processing unit in a bigger neuromorphic chip to deliver “pre-trained” 
data to the input of the neuromorphic computer which will then run a software afterwards for the AI. The multiple frequency 
inputs (left and bottom) can be provided by a single line via arbitrary waveform generation. Different antenna and waveguide 
structures on the k-NET chip provide different means to read out the system.  The disk matrices operating as neurons are 
illustrated by the violet dots placed on top of the feedlines (dark yellow). The blue disks are a schematical representation of a 
typical chip design.  

Second, a small k-net chip can serve as a pre-processing unit (see market analysis) to pre-train data 
sets before they are given to a software or an architecture which might be CMOS based and could 
serve as the input for the computational classification task itself. Thus, the k-net architecture would 
be able to compute a predefined output. Hence, a k-net chip could be a central hardware component 
for artificial neural networks for neuromorphic computing. This could be in line with a current need for 
CMOS compatibility. This is because, to date, hybrid systems consisting of cmos & new technologies 
currently have a higher potential to reach industrial maturity than the new approaches alone. As can 
be seen from the previous deliverable D4.1 to show the state of the art for neuromorphic computing, 
most new approached beyond CMOS have not yet reached the level of maturity to operate fully 
independently. This could be a starting point of k-net to enter the market, establish a hold in the 
market of neuromorphic computing as such “universal” pre-processing unit and then grow from that 
position. Note, that in our system, it is also possible to perform training during the operation by 
tuning the frequency input such that we obtain the desired output. This is different to reservoir 
computing where the system evolves in a “black box” manner and is not manipulated.  

5.7 Concluding remarks on k-NET based devices 

Based on the concept shown in Figure 9 and the specific design of the k-NET sample for the RF 
antennae and the disk geometry (see reports and deliverables from the consortium), a future k-NET 
chip could be envisioned as shown in Figure 10. In principle, the chip only requires a single RF line for 
input and output signals and small permanent magnets- if it could operate at one field value or a 
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permanent field gradient which is placed in close vicinity to the disks (see also Figure 10 for the 
schematics). The design of such a chip in this manner will also ease the commercialization as it can be 
sold as a “all-in-one” device while being compact and consuming little power. If in addition the 
magnetic material (YIG) could be changed to be grown on a semiconductor our approach could be also 
more integrable to CMOS based technology. Furthermore, the chip itself can be upscaled by increasing 
the frequency inputs or by connecting several k-NET chips which each of them individually solve one 
part of a more complex classification. For instance, such as by using multiple disks, we could connect 
one disks output to the other disk’s input. Note, that the promising first results have been so far 
obtained and that further specifications or concrete numbers require further experiments and 
simulations with the involvement of all partners.  

However, at this point of the project and with concrete vision of the first k-NET device, it is now 
possible – and necessary for the future integration of k-NET into the market of neuromorphic 
computing to discuss in more detail the neuromorphic market and its estimated development for the 
next decade. This will also show that the development of a new technology like k-NET is not only timely 
due to a rapidly evolving, young and dynamic market where final key players are not yet fully set but 
also has direct economic and hence political and societal impact for the European Union’s market.  

 

6. Analysis of the market in which k-NET will operate 
6.1 Design of the analysis 
To date, neuromorphic computing and artificial intelligence (AI) markets are expected to have a high 
growth within the next decade due to the combination of improved computational power and 
increasing demands from digital (big data, IOT) and across “classical” key industries such as the 
automotive sector, aerospace and defense, consumer electronics, healthcare or piping for new 
generations of “intelligent systems”. Several economic reports state that the market  for neuromorphic 
computing is expected to grow with a CAGR (Compound Annual Growth Rate) of 89.1 % between 2021 
and 2026 (Neuromorphic Computing Market Size & Share | Industry Report, 2021-2026 | 
MarketsandMarkets™) . More conservatively, the neuromorphic chip market is expected to grow with 
a CAGR of  47.4 % in the period of 2021-2026 (Neuromorphic Chip Market | 2022 - 27 | Industry Share, 
Size, Growth - Mordor Intelligence). Accordingly, the computing (chip) market was valued USD 22.5 
million in 2020 and projected to be worth 550 million-8 billion (source dependent) (333.6 million) by 
2026.  The increased activity of R&D for neuromorphic computing and foundations of spin-offs is also 
reflected in the emergence of new start-ups among them several are located in Europe as will be 
elaborated further below.  

Hence, the main purpose of this section is to identify the main players and trends in product 
development in the neuromorphic market. 

A complete and 100% exhaustive study is not relevant at this very early stage of the project because 
the market is extremely immature and evolving really fast. The paths taken by the technologies are 
dependent on disruptive innovations and scientific evidence emerging from new methods. On the 
other hand, it is important to know the main trends that are emerging by focusing on a few interesting 
examples, the main players involved in the technological race and the needs of end-users. 

In addition, much more comprehensive market analyses have already been carried out. Major 
consulting groups with a reputation for assessing IT technologies have already produced 
comprehensive reports with a business focus. For instance, Mckinsey ("Artificial-intelligence hardware: 
New opportunities for semiconductor companies", [20]) integrates the study of neuromorphic 
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elements into more general AI elements but other studies focus on neuromorphic. This is in particular 
the case of a study by Yole: "Neuromorphic Computing and Sensing Market and Technology Report 
2021" (Yole consulting) which is for instance cited several times in the roadmap on neuromorphic 
computing ("2022 roadmap on neuromorphic computing and engineering", Dennis V Christensen et 
al.). 

The Human Brain Project (HBP) funded by the Commission has also produced two public deliverables 
for the neuromorphic community and broader public:  

- a general reference study on neuromorphic computing: “NEUROMORPHIC 
COMPUTING: Concepts, actors, applications, market and future trends”) 

- a deliverable more focused on SNN but which contains extremely interesting 
elements on the different trends and applications: “Recent Advancements on Deep 
Spiking Neural Networks algorithms and their implementation on neuromorphic chips: 
an emerging new market) 

The purpose of these deliverables is to avoid having to do the very heavy work of a general market 
assessment. This can also help to attract the interest of investors and direct the work of the community 
towards applications with a realistic market. 

The work presented in this section is a synthesis of the most interesting information contained by the 
above sources, enriched with some other elements, and updated as much as possible with more recent 
facts. The aim of the overview, which is more general than the use-case, is to provide a global 
understanding of the market in order to better monitor the market potential, which can sometimes be 
lacking in the theoretical field. 

The end of this section focuses much more on the potential that k-NET could address with the use-
case. This, in order to justify or not the relevance of the use-case not technically as presented in the 
first part, but in terms of market opportunities. 
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6.2. The emergence of Neuromorphic Computing in the context of the AI boom 
1.1) AI market: growth and estimated share in the coming years 

Specialists have very close estimates of the AI 
supported semiconductor market volume. As 
displayed in the diagrams in Figure 11. The 
market is expected to double from around $30 
billion in 2020 to over $60 billion in 2025. 

Another important element to note is that the AI-
supported market is expected to grow five times 
faster than the conventional semiconductor 
market. 

The market is still mainly governed by the AI-
semiconductors although other approaches exist 
(see D4.1). The market itself is segmented 
between datacenter or edge architectures where 
each branch is again segmented according to the 
type of desired AI-operation, if it is performing 
inference or training.  As one can infer from 
Figure 11 (c), in terms of the different types of AI 
accelerators, CPU (Central Processing Unit) and 
GPU (Graphics Processing Units) currently have 
the largest share of the market, although new 
technologies are gaining momentum. By 2025, 
ASIC (Application-Specific Integrated Circuit) 
technologies are the most promising trend, 
although the GPU will also continue to grow. The 
synergies between ASICs and neuromorphic 
computing are very promising and are a dynamic 
field of study. One example is the partnership 
between BrainChip (Akida neuromorphic chip) 
and MegaChips, one of the world leaders in the 
ASIC field. The other major distinction is between 
edge-computing and data center architectures 
(clouds). As can be seen in Figure 12, the edge 
market is less developed at the moment, but the 
next few years will see the emergence of a much 
larger edge market, driven in particular by the need 
for security and cost efficiency. In-situ processing is de facto much less energy intensive. Edge AI 
emerged from a desire to integrate artificial intelligence as close as possible to sensors or connected 
objects (IoT, Internet of Things). The advantages are multiple such as no need for permanent internet 
connectivity, data confidentiality, reduced latency.  

 

Edge AI allows part of the IT processing flow to be moved directly to the connected objects, thus 
reducing the use of the cloud for processing-related tasks to a minimum. The edge AI is really going to 
be the first catalyst for the emergence of neuromorphic technologies. There are still many bottlenecks 
to go beyond the classic cloud and data farm computing models in the short to medium term, although 
work is already underway to significantly scale up neuromorphic devices. 

Figure 11: Growth of the AI-semiconductors market volume 
(Kennis, 2019) (b) Market of AI and Non-AI semiconductors 
(Batra et al. ,2018). (c) Market segmentation for the AI-
semiconductors market. The segmentation is first by the markets 
for either datacenter (cloud) or edge AI architecture, and then by 
the specific AI operation which is Inference or Training. The 
market share of the individual semiconductor technologies (ASIC, 
CPU, GPU, FPGA and GPU) is shown 
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We will discuss edge computing in more 
detail in the section on applications. 

 

6.3 The place of neuromorphic 
computing in the future of AI 
a) General outlook for the 
neuromorphic market  

The market is currently extremely small (or 
even almost non-existent) since it does not 
even represent 1% of the AI-supported 
hardware market. However, it is expected to grow drastically over the next 10 years. 

 

Figure 13:  Forecasting on the development of the AI market (Yole consulting, 2021). From to date to 
2035, the market share of neuromorphic computing is predicted to be a substantial part of the AI 
market, which would be an increase by 60 of the market seen by 2025.  

 

Although studies do not predict the same exact size of the market and the moment when the take-off 
will start, the general trend towards a significant increase in market share is indubitable. This potential 
has been recognized by both the scientific and economic specialists, who are enthusiastic about the 
development of neuromorphic technologies. This trend is indeed also reflected in the increasing efforts 
(research volume, funding and investments). 

This steep gain in market share can in particular be attributed to the significant advantages 
neuromorphic AIs offer compared to conventional AI accelerators. Among them are a better energy 
efficiency and improved theoretical performance. More importantly, they can also handle both AI 
inference and training in real-time. Moreover, edge training is possible through neuromorphic chips 
[21]. However, as stated earlier, learning methodologies should be improved to increase their 
accuracy.  

Figure 12: Market overview of semiconductors for Data 
Center architectures and Edge AI (Batra et al. 2018) 

 



 

 

- 22 - 

Yole and TMT Analytics expect that the market size of neuromorphic chips can reach a billion-dollar 
around 2025 with a growth rate of 51% between 2017-2023 (Yole Development, 2019. Neuromorphic 
Sensing and Computing 2019; Market and Technology Report). By 2035, the Yole report predicts that 
it will represent a share of about 18% of the total AI market worth about $20 billion. 

One can partly infer on the dynamics and 
controversial predictions of the 
neuromorphic computing market as, for 
instance, in Ref. [21] the authors predict a 
dominance of neuromorphic computing in 
the AI-accelerator market in the early 
2030s (see Figure 14). These optimistic 
estimates must of course be tempered by 
the fact that they depend on the success 
of the first neuromorphic applications on 
the market and the overcoming of the 
bottlenecks mentioned. 

Note, that the absence of complex wiring 
and the unique approach of k-NET to translate the 
operation from real to wavevector space is also 
one of its biggest assets to overcome current 
bottlenecks in the neuromorphic computing sector. In the following, we further outline the current 
developments of the neuromorphic computing market in general and show how the paradigm change 
made with k-NET can lead to a more universal impact on neuromorphic computing. Although we focus 
on vowel recognition for the proof-of-concept classification task with k-NET, other classification tasks 
and a combined inference and training would be possible. Thus, k-NET has indeed the potential to be 
a game changer.  

Another shared opinion among specialists is that neuromorphic technologies will be at the heart of the 
development of edge computing. This will even be more and more relevant in the context of IoT 
(Internet of Things) where networks can be overwhelmed by irrelevant information. Regarding k-NET, 
the integration of k-NET in the edge revolution remains conditional on certain factors, notably the level 
of complexity and speed of the needed processing. k-NET based devices would be particularly 
competitive if a high processing power is needed.  

 

6.3. Mapping of the main players in neuromorphic hardware: 
1) Overview:  
The most advanced countries and currently dominant players are China and the United States. The 
United States is led by Intel and IBM, which decided to create neuromorphic communities around their 
chips and were the first major movers. However, China is the leading country in terms of patents. 
Surprisingly, large US companies like Apple have their neuromorphic patents registered in China. One 
of many examples of Chinese ambition is the recent acquisition of the Swiss start-up aiCTX by the 
Chinese company SynSense. aiCTX was one of the neuromorphic start-ups that raised the biggest 
hopes among the neuromorphic players. The CEO of SynSense has announced that he wants to create 
the largest neuromorphic ecosystem in the world. It is therefore reasonable to anticipate that we will 
see much more patents from Chinese companies soon. 

Europe is far from being left behind. It is the continent with the largest number of interesting start-ups 
in the field of neuromorphic hardware and taken as a whole it is the 3rd region in terms of patents. 
The initial European efforts such as with the Human Brain project (HBP) which resulted in one of the 

Figure 14: Expected waves for semi-conductor dominance in 
the area of AI (Kendall & Kumar, 2020) 
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largest neuromorphic computers to date – BrainScales- are reflected in the fact, that among the 10 
highest rated start-ups world-wide for neuromorphic applications are two European ones. These are 
namely Innatera Nanosystems, a Dutch company using SNNs and INSTAR Robotics, a French company 
which employs neuro-inspired robots for agriculture. Outside of the EU but in the European market 
are a British company in the healthcare sector namely Cryx Medical for Neuromorphic sensors, better 
medical devices and bioelectronics, and iniLabs a swiss, spin-off of University Zurich and ETH for 
dynamic audio sensors based on SNNs and address-event-representation. 

Moreover, the HBP is certainly the most ambitious international project in neuromorphic computing. 
It is not only focused on computing. It explores cognitive mechanisms, medical applications, etc. It also 
allows the constitution of a European community, datasets and tools that can be unlocking factors for 
innovation. The HBP also provides a pool of potential partners. 

Although Europe is currently lagging behind in the semiconductor market and the electronics industry 
in general (just under 10% of the microchip market), it has greater ambitions for the future IT 
revolutions and the possibility to take the lead in neuromorphic computing is considered as a great 
opportunity. 

In this mindset, the announcement of the Chip Act [22] is a natural step in developing a European 
technology.   This act is comprised of a €43 billion worth investment to reach 20% of the world market 
by 2030. In view of the plethora of open questions and challenges, the Chip Act includes both funding 
for fundamental research and also a detailed plan for setting up a European ecosystem for 
neuromorphic computing: 

I. Invest in next generation technologies identified as key for economic and political independence 
II. Establish EU-wide access to design tools and pilot lines for prototyping, testing and experimenting 
with advanced chips 
III. Develop a certification procedure for energy-efficient and reliable microchips to ensure the quality 
and safety of critical applications 
IV. Create a more investor-friendly framework for setting up production facilities in Europe. 
V. Help start-ups, growth companies and innovative SMEs to access equity finance. 
VI. Foster skills, talent and innovation in microelectronics. 
 
The announcement of the plan can be a real opportunity for the next steps to be taken after the end 
of the k-NET project since: operating in k-space and using the as inputs radio-frequency signals in the 
GHz range, k-NET brings all prerequisites to be employed for signal processing and hence IT & 
telecommunication and aerospace & defense.  

Furthermore, the presence of THALES as a stakeholder for RF applications and defense, will support 
and accelerate the incorporation of k-NET into the market. Also, this allows to gain market shares in 
this area of neuromorphic computing in the next years thus reenforcing the market “made in Europe”.  
Although all markets are expected to grow in the coming years, the APAC (Asia-Pacific) market is yet 
expected to grow the most, boosted by the strong economic growth of China and India and common 
interests in wearable technology and machine-to-machine communication. The European market, 
however, is only expected to undergo a growth on the intermediate level, if it is benchmarked against 
the other economical areas such as Northern America and APAC. In view of the societal and political 
challenges, we will be facing in the following decade(s), pushing the autonomy and the power of the 
European market is inevitable to maintain the current societal and economic conditions. This is 
reflected also in the Chip Act. Correspondingly, by opening a new axis of neuromorphic computing with 
first envisioned concrete applications in future central sectors of neuromorphic computing, k-NET can 
- as a fully European consortium- strongly contribute to that.   
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2) The most prominent players 
In this section, we will not discuss in detail the technologies developed by the institutions (laboratories, 
companies, etc.). The elements we highlight are in particular the interest aroused in the community 
and investors, some technical characteristics of the technological development scheme and finally the 
potential markets or the expected uses of the technology. 

The market is above all characterized by its highly atomized character, which is totally different from 
the conventional semiconductor market of course (a much older and highly concentrated market). It 
is impossible to talk about all the chips and all the start-ups because there are so many. The two HBP 
market analyses mentioned above include tables gathering many more players. Here we focus on the 
most important ones with more up-to-date data and enriched with some names. 

 
Figure 15: Main companies and research driven players for the neuromorphic computing market. (Source: Neuromorphic Computing and 

Sensing Market and Technology Report 2021, Yole consulting) 

A. IBM and Intel (first big movers): 
 

 A.1. IBM:  
 

IBM was the first big company to develop its neuromorphic chip. TrueNorth was one of the 
first chips to show better qualities than conventional systems. The chip has for instance proven 
usefulness in relation to low energy consumption compared to GPUs [23]. However, the device 
is on-chip programmable so it can be only used for inference. This is a major disadvantage for 
the on-chip training research and at the same time limits the usage of the chip in critical 
applications (such as autonomous driving which needs continuous training). IBM is carrying 
out important research work in the field of emerging memories in particular. The first version 
of TrueNorth had no integrated memory. However, a new version of IBM's neuromorphic 
chipset tested in 2018 has integrated PCM (Phase Change Memory) memristors. This further 
improved the energy efficiency of the whole package, but with only 204,900 synapses to begin 
with. The tests were carried out on a writing recognition algorithm applied to the standard 
MNIST base. This chipset performed 29 billion operations per second per Watt consumed, 
slightly less than the original TrueNorth chipset. 
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One IBM'S objective is to use the chip on cognitive applications such as robotics, classification, action 
classification, audio processing, stereo vision, etc. However, at the moment the TrueNorth is not for 
sale for end-users, being only used for research purposes. 

A.2. INTEL:  

Intel released its neuromorphic chip “Loihi” in 2018 [24]. The chip is digital and on-chip programmable. 
This gives flexibility to the chip so that researchers can work on a variety of learning methods, from 
DNN to SNN conversions, native SNN, etc. Like IBM, Intel is also investing in the commercialization of 
the neuromorphic chips and learning methodologies. 

More recently, the company announced a new version of its chip as well as Lava software (an open-
source software framework for developing neuro-inspired applications) [25]. Intel claims that Loihi 2 
enables the architecture to support new classes of neuro-inspired algorithms and applications, while 
offering up to 10 times faster processing, up to 15 times greater resource density with up to 1 million 
neurons per chip, and improved power efficiency. 

Intel is specifically interested in cognitive applications. They expect to have a killer-app to solve real-
world problems. And they believe that such an app should be related to the robotic sector, which is 
the one where the neuromorphic chips can more markedly express their competitive advantages, i.e., 
a “real-time inference with low energy consumption”. 

 

 

 

 

B. The most advanced commercial chips: 

B.1. Brainchip:  

The Australian company recently released the second version of the Akida neuromorphic system-on-
chip. Their inference and training chip is claimed to be the first fully versatile, reconfigurable and 
scalable commercial chip. Brainchip promotes its chip for facial recognition, object detection and 
classification or autonomous learning technology, keyword retrieval and speech classification among 
others. 

In order to increase the volume of potential customers, they also sell the intellectual property licenses 
of their designs (Mankar, 2020). The company has also announced two major partnerships [26], [27]:
  

1.  In May 2022, a technology partnership with Japanese ASIC company Megachips. The aim is 
to provide Akida advanced, ultra-low-power learning-on-chip and artificial intelligence 
capabilities as embedded technology in Megachips' ASIC solutions. 

2. In June 2022, a technology partnership with Prophesee (a French start-up leader in 
neuromorphic sensing) to provide next generation platforms for OEMs looking to integrate 
event-based vision systems with high levels of AI performance coupled with ultra-low power 
technologies. 

They also have an older partnership with NVISO (a Swiss company specialized in edge computing) to 
target battery powered applications in robotics and mobility/automation. 

Note: It is merely impossible to cite all the projects developed by the major electronics groups because 
they are all at least minimally interested in hardware for neuromorphic computing. Samsung, for 
example, has chosen to approach neuromorphic innovation essentially through sensing.  
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The impact of the Akida Brainchip needs to be monitored closely. The value of their shares on the 
Australian Securities Exchange (ASX) increased by 973% last year, with a total market capitalization of 
A$749.7 million (Yahoo! finance, 2021 and Stocklight, 2021). They have raised about $30 million and 
Brainchip definitely seems to be the most advanced company in the commercial race. 

 

B.2. SynSense (former aiCTX):  

In May 2020, the Chinese company SynSense acquired the Zurich based company aiCTX. SynSense 
develops neuromorphic hardware and software solutions by leveraging the work of the Institute for 
Neuroinformatics at ETH Zurich. They have modified and improved this original chip into different 
purposes. DynapCNN manages one million impulse neurons and four million parameters adapted to 
very low power embedded applications. In particular, it is used in computer vision applications for real-
time event detection with a very low latency of 5 ms. It supports all types of convolutional neural 
networks. The ASIC type chip is manufactured with the 22 nm technology-node and exhibits a footprint 
of only 12 mm2. DYNAP-CNN is adapted for Spiking Convolutional Neural Networks which makes it the 
best candidate for visual processing applications via input from event-based vision sensors. 

They also propose the DynapSEL which is adapted for various neural networks, notably recurrent or 
reservoir neural networks and for applications in health and robotics. It includes a thousand pulse 
neurons and 80,000 configurable synapses. DYNAP-SEL enables on-line learning and real-time 
implementation of large-scale models with its large fan-in and fan-out network connectivity. The latest 
available chip DYNAP-SE2 is suitable for real-time applications in the area of robotics and medical 
health applications (not many other information at the moment). Concluding on that, used as the basis 
of the Chinese neuromorphic  ecosystem (and surely highly supported nationally), it is a player to watch 
[28]. 

B.3. GrAI Matter: 

The French company is designing a processor based on a neural network architecture, digital but 
asynchronous, using spiking neurons. They developed a first sparsity native AI-SOC (system on chip) 
where they aim to use edge computing mostly for audio and video processing. Their ambition is to 
integrate a million neurons in a square centimeter, consuming 1 W and programmable in Python.  

They raised $30 million, and they have obtained a million dollars in funding from DARPA for an FPGA 
demonstrator that is already working. The target markets are autonomous vehicles, the connected 
home and health  [29]. 

B.4. Rain: 

Rain is an American start-up company that is developing a "Memristive Nanowire Neural Network " 
chipset architecture that would be fast, powerful and highly scalable. The neurons are connected to 
each other by nanowires arranged somewhat randomly to link the neurons together. They use deep 
learning with the "reservoir network" technique. It is an original approach [30]. 

Rain recently raised $25 million, bringing the total to $30 million. The applications are not really 
detailed at the moment, but the company is really attracting a lot of interest among investors and 
scientists alike. 

 

B.5. AnotherBrain:  
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It is a French startup that has raised 30M€. The architecture of its chipset is not documented at this 
stage. The concept would be very different from all other neuromorphic chipsets, with the advantage 
of a faster training process requiring less data and energy. The startup is targeting industrial and 
automotive applications. The principle seems to be handcrafted feature-based learning to detect 
anomalies in images [31]. 

 

B.6. Other research chips: 

Other chips are currently geared towards research, such as Loihi (Intel) and Truenorth (IBM). 

The most important research chips are: 

I. SpiNNaker which is a digital, on-chip programmable hardware designed by the University of 
Manchester. SpiNNaker was the first of such type of on-chip programmable digital chip, so a wide 
variety of research has been conducted around it. It aims to simulate the operation of a billion neurons. 
It is based on a hardware architecture with 18 32-bit ARM cores of 18,000 neurons per chipset [32]. 

II. BrainScaleS is an analogue, on-chip STDP programmable hardware designed by the Heidelberg 
University. BrainScaleS is designed for brain-research applications to study neuronal activities of 
biologic structures. It is an accelerated system that runs 10000 times faster than biological speed [33]. 
However, the analogue structure and acceleration (signal loss during such a rapid transmission) causes 
noise in signals and decreases the accuracy compared to other neuromorphic digital chips [33]. 

III. Braindrop, launched in 2019, which is a subthreshold analog mixed-signal neuromorphic hardware 
built by Stanford University. They design chips for the research purposes, rather than commercial. 
Stanford University claims that their chip consumes lower energy than the Intel Loihi and the "energy-
efficient" AI accelerator of the Tesla chip [34]. 

Braindrop's research has recently evolved into a commercial chip developed by the Femtosense spin-
off which is currently only used for audio and sound classification. 

IV. Many other research chips exist of course such as CEA Leti's "SPIRIT" [35] or the promising Darwin 
chip from Zhejiang & Hangzhou Dianzi University [36]. 

6.4. Potential Applications and Trends 
1) Market segmentation 
The market segmentation is important as well to assess where the k-NET technology can enter and 
have the highest, disruptive effect in terms of a game changer. Despite these really recent and 
encouraging developments from fundamental research and new companies, the neuromorphic 
computing market is still a niche and just starting to form. Although some companies such as Intel 
currently share higher market holds than others, there is a lot of movement in this market. This change 
is expected given the dynamical development which is foreseen for the neuromorphic computing 
market. Recent studies point out that the currently leading contributors in this sector are pursuing 
market development strategies such as setting up collaborations, product innovation and intensified 
R&D actions. Therefore, contrary to a consolidated market the market concentration is still considered 
to be at the medium level. This leaves lots of opportunities for new players such as a possible one 
based on k-NET to enter this market (see Figure 16-17). Hence, a high impact of the new k-NET 
technology is reasonable. 

The market segmentation per (leading) company is shown in Figure 16 [37].  
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Figure 16: Market segmentation of the neuromorphic computing market per (currently leading) company. It shows the market 
is segmented at a medium level and about to form, thus yielding huge potential for new ideas such as k-NET to enter the 
market at this stage.  

Note, that following current analyses for the development of the neuromorphic market, most reports 
state the complexity and limited density of current market solutions as one of the main hindering 
factors for true commercialization of neuromorphic computing and making it to leave its niche position 

However, in terms of the applications – especially since k-NETs approach is more versatile and could 
be used for different classification tasks- a market segmentation per application area and the revenue 
breakdown are also important.  

 

   

Figure 17: Neuromorphic revenue breakdown per markets. Each market itself presumably requires different types of 
classification tasks such as digit recognition or speech recognition.  (Yole Development, 2019. Neuromorphic Sensing and 
Computing 2019; Market and Technology Report). Note, that the circles go from 2024, the latest on the inside to 2034, the 
latest on the outside.  
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As can be seen in Figure 17, the first wave from 2024 onwards will be driven mainly by the mobile 
sector, with the industrial sector in second place. Please note that this distribution should be put into 
perspective because the market will still be extremely small and the sales volume very low. Around 
2029, these two segments should be leading the way, with a substantial increase in automotive.  
Finally, around 2034, which should be the date of maturity of the neuromorphic market, the 
automotive sector will be in first position and the industrial sector in second position and should 
surpass the mobile sector. 

The applications in the three fields are extremely vast, hence it is not possible to go into too much 
detail here. Nevertheless, a few remarks can be made. 

To date, the automotive market is mainly based on sensors towards autonomous vehicles. The 
applications for the (production) industry are mainly based on the new robotics revolution which also 
means automatization and an increased need for “independently operating” machines. The 
continuous improvement of the automation of production lines and logistics also represents an 
opportunity sector for task classifications. The mobile and consumer markets are often lumped 
together. However, if we separate the two, we can see the overwhelming dominance of the mobile 
market. In this area, classification tasks clearly have a special place. In terms of volume, this is where 
the biggest business opportunities lie. 

Segmentation data can be very interesting for selecting partnerships and applications to focus on in 
the future and over time. A few other data can be drawn from which are in line with remarks often 
made by specialists. 

The medical market, for example, which could be expected to generate higher sales volumes, is a niche 
and will remain so for some time. This field is less open to AI innovations, in particular because of the 
much stricter legal framework and the risks it arouses. Although extremely interesting applications 
with great social benefits exist, including in the field of speech recognition (for example, the Parrotron 
project supported by Google and inspired from the Euphonia project, which is working on speech 
recognition for people with disabilities like neurodegenerative diseases), the medical sector remains 
limited and essentially driven by research on imaging. 

In any case, the market segmentation and the volume represented by the different segments are 
elements that should not be neglected when choosing applications and end users. 

2) Dominant trends in neuromorphic applications: 
The two trends presented here are not the only ones that are stirring up the neuromorphic market, 
which is really booming. However, they stand out in particular, and although the k-NET project does 
not aim to address them immediately for the proof-of concept demonstration, it is relevant to mention 
them briefly (without explaining all the technical ins and outs), particularly as the versatility of the 
technology may make it possible to imagine different applications in the future. 

• Event-based sensors and cameras: 

Event-based cameras and sensors have critical advantages over conventional cameras and sensors, 
such as low latency, lower power consumption, high temporal resolution and high dynamic range. 
Their real-time capability is essential for the artificial intelligence sector such as robotics, autonomous 
vehicles, IoT surveillance systems, eye-tracking and control systems for augmented reality. 

The event-based camera and sensor companies are mostly European start-ups, with the exception of 
Samsung and the Chinese company Celepixeli. European companies include the French companies 
Prophesee or Insightness and Inivation from Switzerland. Samsung is the major technology company 
that dominates this sector by far.  
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Recently, interest in event cameras has exploded. Sony has bought Insightness, the agreements 
between Sony, Bosch and Intel with Prophesee have led to strong partnerships with Intel, Bosch and 
Sony, and different sectors are interested as shown by the strong patent activity of Apple, Toyota or 
Huawei. 

k-NET being intrinsically a dynamical computation approach, it does not apply well to sporadic event 
monitoring, it nevertheless could be included in the neuromorphic signal processing at the backstage 
of the camera (or the sensor). 

• Memory: 

Emerging memories are another really promising technology area. Emergent memories can emulate 
synaptic elements in a very compact way, enabling massive parallel computations in a fast and efficient 
way [38]. Advances in this area are very promising not only in terms of inference capabilities but really 
enable a move towards on-chip training, one of the revolutions in edge computing and neuromorphic 
computing. Interest in the use of non-volatile memories on neuromorphic chips has grown very 
significantly in recent years  

Major players are present in this field such as IBM, Samsung or Qualcomm, but one should also keep 
a close eye on.  Another promising start-up in this field is Rain-neuromorphic, mentioned above.  

k-NET has the advantage to propose a fading memory approach well suited for computing but less 
relevant when it comes to long-term memory needs. 

3) Focus on the potential of classification tasks with speech recognition: 
As we currently plan to choose for the proof-of-concept demonstration of k-NET, vowel recognition as 
the first classification task it is also important to investigate the specific market potential for speech 
recognition as well.  

Generally, the market for classification tasks is extremely large like the AI market. The main market is 
by far the image classification market as shown in the Figure 19.  

 

Figure 19: Development of the neuromorphic market segmentation per classification task between 2020 (orange) and 2030 
(blue). One can see that the classification tasks of image and signal recognition will become dominant in the future. With k-
NETs potential to perform both of these tasks, there is definitely a number of possibilities to enter the market later on. Figure 
from Modor Intelligence.  
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Thus, here, different task classifications linked with speech recognition will be discussed in more detail. 
The latter, represents a sub-segment of the AI market dedicated to language analysis. Note, that this 
also includes conversational robots, machine translation, data extraction, summary creation and text 
generation, to name only a few examples. 

The field of speech recognition mainly exploits deep learning and recurrent and memory networks. 
This field of AI is, however, a little less mature beyond the fundamental research level than that of 
image recognition. The complexity of speech recognition stems from context-dependent variants in 
expression and also from ambiguities in language. However, the adoption of deep learning has recently 
advanced this field enormously. 

The possible applications are vast, but two segments are particularly important. First of all, the IoT and 
mobile segment. In this sector one finds the whole field of voice assistants, translation software, etc. 
This is an area that has been widely documented. This is a very well-documented area, now quite 
structured around the digital giants. 

The other most important sector is that linked to marketing and the constitution of exploitable voice 
data, to which we can add call centers and customer management. 

Large start-ups are active in this segment such as Cogito who raised 120M€ and analyses calls in call 
centers to help online advisers in real time. It is a spin-off of the MIT Media Lab that exploits behavioral 
science [39].  

They leverage IBM Watson APIs dedicated to natural language processing such as Personality Insights, 
Natural Language Understanding, Tone Analyzer, Document conversion, Twitter Insight and Natural 
Language Classifier. 

The French start-up AlloMedia who raised $12.3M uses speech recognition to extract structured and 
semi-structured information from customer dialogues in call centers, to feed their CRM databases and 
improve lead transformation [40]. This is what MonkeyLearn and Dialpad also offer.  

• Cloud/data center for speech recognition: 

The emergence of neuromorphic applications in this area faces the same bottleneck for scaling up as 
the entire neuromorphic sector (already discussed). k-NET approach can be relevant for this kind of 
application. This market is nevertheless too mature to be targeted at this stage.  

• Edge market: 

On the contrary, k-NET based neuromorphic computing could take advantage of the edge market trend 
in speech recognition. With the increasing power of embedded processors in mobiles and other 
connected objects, there is less and less need to go back and forth to servers in the cloud. There are 
two possibilities for using the classification of speech in the edge market: the first and the most obvious 
one is to allow full autonomy of at least some functionalities and not to have to send data to the cloud 
(used for applications with increased energy efficiency or security among others). 

The other possibility is to perform pre-processing tasks. The best-known pre-processing tasks are: 

• Data cleansing 
• Data editing 
• Data reduction 
• Data wrangling 
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Pre-processing allows to significantly improve the datasets and the quality of the final processing, and 
to increase the security of the data.  

Note, as stated in the first part on the physical implementation that a more generic application of k-
NET would be the use as a pre-processing chip due to the envisioned versatile use for different 
classification tasks, its training and inference properties.  

• On-Premises for speech recognition: 

On-premises software refers to software established within the organization’s internal system along 
with the hardware and other infrastructure necessary for the software to function (meaning that the 
hardware is on-site, and the data comes via a local network). Just like the edge, the objectives can be 
to enable total autonomy in analysis or operation (this time not at the level of a device but on site). 
On-premises classification tasks can also simply consist of pre-processing actions as mentioned above 
for the edge. Although niche uses are conceivable, the use of on-premises technologies are currently 
mainly of interest in industry and in large logistics centers for example.  

On-premises technology has indeed certain shortcomings which mean that it can only be used in 
certain sectors. The cost of infrastructure is high and so is the cost associated with the software, which 
is sometimes developed or adapted to a special use-case. 

On the other hand, this type of computing is relevant for very large infrastructures that receive a very 
large flow of data. In the industrial sector, on-premises speech recognition could be used, but only on 
the margin. A specific but very interesting use in view of the volume of the market could be in call 
centers.  

Once again, it is a question of processing the data in its entirety if the need is only for a fairly simple 
classification or pre-processing it before sending the data. The objective is to avoid sending sensitive 
data or heavy and irrelevant datasets to the cloud. Call centers are a huge market and very prone to 
automation and speech classification. 

Many tasks can be automated to reduce staff costs but also to improve security for example (e.g. the 
speech recognition biometrics solution for call centers from project partner Thales, part of its Trusted 
digital identity platform) [41]. 

Beyond automation, it is mainly about the processing of marketing data. In this area, on-premises pre-
processing tasks are extremely relevant. The flow of data to be analyzed can be very large and initial 
on-site processing clearly helps to reduce the mass of data and security and confidentiality (a crucial 
element from the point of view of compliance with laws and regulations). 

• Examples for speech recognition applications from different neuromorphic players: 

I. INTEL Loihi : In cooperation with Accenture, Intel compared the ability of Loihi to recognise voice 
commands with that of standard graphics processing units (GPUs). Intel claims that Loihi achieved 
similar accuracy being up to 1,000 times more energy efficient and responding up to 200 milliseconds 
faster. Through their neuromorphic community, Mercedes-Benz is exploring how these results could 
apply to real-world use cases, such as adding new voice interaction commands to vehicles [25]. 

II. Tianjin University developed their Tianjic hybrid chip to separate spatial and temporal processes 
within the hardware. Researchers processed the voice recognition and detection process with the 
neuromorphic chip whereas the object recognition & detection applications were done with GPU. They 
used this solution to control a smart bike. The objective is to benefit from the features of the two 
technologies [42].  



 

 

- 33 - 

III. Within HBP, the University of Heidelberg has developed two native spiking datasets for speech 
classification and keyword spotting. These datasets are based on the Heidelberg Digits which consist 
of 10K high-quality audio recordings from zero to nine, and Speech Commands which consist of 24 
single word command from 1864 speakers. Combined with the native visual ones, Heidelberg’s two 
audio datasets provide a generic benchmarking tool for neuromorphic community [43]. 

6.5. General and summary remarks on the market study: 
 

Several elements emerge from the market analysis. The first thing that was not necessarily the most 
obvious, is that there are many signs that the theoretical potential of neuromorphic computing  (which 
was mostly known by the scientific community) is taking off and becoming a reality in the market. The 
biggest players, such as IBM or INTEL - and even if they do not have launched their commercial chip 
yet - are developing more and more application-oriented partnerships, involving players in the 
segments that will be the most promising in the neuromorphic revolution (automotive, mobile 
applications, etc.). Start-ups are multiplying, they are raising substantial funds, we are seeing buy-outs 
and the first ones are launching a real commercialisation, starting with Brainchip and its Akida chip. 

The second element is that this burgeoning activity is taking place in the context of a still very 
fragmented market. There are many activities but they are still on a small scale. The overall amount of 
investment is increasing but fund-raising remains fairly limited for the electronics market. Most of the 
funds raised are in the order of 30 million euros, which, as mentioned above, is a very encouraging 
sign, but shows the immaturity of neuromorphic computing and the fact that it is still seeking its place. 
The technical versatility of the k-NET concept is interesting from this point of view, making it possible 
to avoid finding oneself in a dead-end street and carrying out work that will not meet its users. 

Nevertheless, some major drivers are emerging that should structure the neuromorphic market. The 
most promising segments will be mobile, industrial and automotive. The market will, at least initially, 
be driven by the edge. Event-based and memory are the elements that are attracting the most interest. 
Image processing will be, as in general for AI, the first sector, but audio processing will be the second 
point of the task classifications. All these elements will be undoubtedly strong markers. 

On the specific subject of the speech recognition classification tasks for the first proof-of concept 
device based on k-NET, the elements mentioned in the document show the relevance of the choice of 
this use-case. The most buoyant segments will obviously be concerned and the sales volume will be 
high enough to hope to attract investors. In particular, the most promising segments that are 
extremely sensitive to innovation (and already heavily penetrated by AI) are concerned by the most 
obvious applications. Mobile (and consumer) in the first place, but also call centers and, more broadly, 
audio marketing processing. These players could largely be the first relays to make the technology 
evolve towards the market and allow the application domains to be extended. 

 

 

7. Conclusion and outlook: 
The corpus of deliverables 4.1 and 4.2 serves well as a first bridge to connect the theoretical and radical 
new approach of k-NET with a tangible market reality. The project is low TRL and still at an early stage 
so the work will inevitably further evolve and change the approach. However, this preliminary work 
allows us to foresee pathways emerging and may allow the approach to mature in a context that is 
better known and therefore easier to grasp. 
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It therefore allows the outline of a coupled development and exploitation strategy. Within the market 
context summarized in this document, any disruptive approach such as that of k-NET should be 
benchmarked against existing solution some of which are already commercial products. Given the 
change in paradigm in the way information is handled in a k-NET device, this benchmarking will need 
to address the full k-NET methodology including data pre-processing to binary data output. Such a task 
cannot be performed at once. We therefore are choosing to first prove the feasibility by using a 
standard benchmarking example such that of vowel recognition. In this stage we will not evaluate the 
pre-processing and post-processing costs. If successful, the second stage will be to evaluate those costs 
and identifying the use case that makes them the most relevant for market penetration.  

In practical terms, the next steps are now to steer the initial research work already carried out towards 
the proof of concept as we have defined it here and to be able to validate the first encouraging results 
for the mentioned specific use-case. On the other hand, the lessons learned from the brief market 
study should be used to refine the exploitation strategy so that the final end-user workshop can be 
thought through and prepared in such a way that it can be of great use for the potentially interesting 
use of the project results beyond this. 
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