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2. Project abstract: 
 

Artificial neural networks represent a key component of neuro-inspired computing for non-Boolean 

computational tasks. They emulate the brain by using nonlinear elements acting as neurons that are 

interconnected through artificial synapses. However, such physical implementations face two major 

challenges. First, interconnectivity is often constrained because of limits in lithography techniques and 

circuit architecture design; connections are limited to 100s, compared with 10000s in the human brain. 

Second, changing the weight of these individual interconnects dynamically requires additional memory 

elements attached to these links.  

 

Here, we propose an innovative architecture to circumvent these issues. It is based on the idea that 

dynamical hyperconnectivity can be implemented not in real space but in reciprocal or k-space. To 

demonstrate this novel approach, we have selected ferromagnetic nanostructures in which 

populations of spin waves – the elementary excitations – play the role of neurons. The key feature of 

magnetization dynamics is its strong nonlinearity, which, when coupled with external stimuli like 

applied fields and currents, translates into two useful features: (i) nonlinear interactions through 

exchange and dipole dipole interactions couple potentially all spin wave modes together, thereby 

creating high connectivity; (ii) the strength of the coupling depends on the population of each k mode, 

thereby allowing for synaptic weights to be modified dynamically. The breakthrough concept here is 

that real-space interconnections are not necessary to achieve hyper-connectivity or reconfigurable 

synaptic weights.  

The final goal is to provide a proof-of-concept of a k-space neural network based on interacting spin 

waves in low-loss materials such as yttrium iron garnet (YIG). The relevant spin wave eigenmodes are 

in the GHz range and can be accessed by microwave fields and spin-orbit torques to achieve k-space 

Neural computation with magnEtic excitations. 
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3. Purpose of the document: 
 

The k-NET project proposes a new architecture for the realization of neural networks for neuromorphic 

computing and artificial intelligence by the operation in wavevector k-space. This drastically enhances 

the systems interconnectivity while minimizing physical circuitry and energy consumption of the 

neuromorphic hardware architecture. The radical new approach of k-NET will also have implications 

on algorithms where neuromorphic computing is used for machine learning and classification tasks 

such as vowel or image recognition. Prior to any benchmarking, as a nascent approach at an early stage 

of the k-NET project, a survey on alternative technologies for the neuromorphic hardware and the 

respective classification tasks is necessary. In this report, we thus present a state-of-the art survey of 

alternative technologies, their physics, and their application for neuromorphic algorithms for 

classification tasks. This sets the foundation for a sound estimation of the k-NET conjuncture for 

classification tasks in the following course of the project. 

This document is related to the Task 4.1: “Choose and Study” which has the objective to identify the 

“place” of our technology in the landscape of neuromorphic applications, with a particular focus on 

object classification. 

4. General introduction to neuromorphic computing 
 

The fourth industrial revolution towards an industrialized society 4.0 is in full swing and is going to 

introduce yet another paradigm shift in the way, we live, work, trade and communicate. Inextricably 

linked to this transformation is an exponentially growing demand for data storage, communication and 

Figure 1: General overview: Artificial neural networks as a subset of machine learning and artificial intelligence, 

respectively. (a). (b) Current two main hardware architectures: Top: Type of artificial neural networks (ANN) emulating 

neurons by real-valued mathematical functions using nonlinear-activation functions towards the output, continuously driven 

and mostly in forms of.  multi-layer perceptrons (deep neural network) employing hidden layers. Backbone of training 

methods for applications such as pattern classification and speech recognition using supervised techniques such as 

backpropagation methods. Usually implements with von-Neumann platforms (e.g., GPU etc.). Bottom: Brain inspired 

networks for artificial intelligence: Spiking neural networks (SNN)(a)-(b) adapted from V. Milo et al., Mat. 13, 166 (2020) (c) 

Adapted from S. Dutta et al., Front. Neurosci. 14, 634 (2020)   
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information processing capabilities. If the requested demands should be provided by technology using 

CMOS based and classical von Neumann architectures, it is envisioned to exceed the global energy 

production  by 2040 [1]. Thus, new means to satisfy the growing data demand while simultaneously 

facing the consequences of global warming and hence ways to minimize the global CO2 footprint of 

the future technologies, are necessary. At the core of the industry 4.0, is the utilisation of artificial 

intelligence (AI) for optimization, intelligent, self-learning connection of machines, processes & 

production which not only employs state-of the art means of information and communication 

technology but also shapes the way we treat data and communicate itself. Although it is still under 

investigation by neuroscientists, the human brain is the best-known computation unit in terms of 

speed, energy efficiency, memory learning and optimization capabilities. Thus, key to artificial 

intelligence are approaches which aim to “emulate” the human brain via physical neuromorphic 

hardware implementations and “simulate” the learning and optimization via dedicated algorithms 

(depending on the specific choice of hardware). Up to date, classical digital computation and mostly 

the basis of current most mature AI system uses traditional artificial neural networks (ANN) (c.f. Figure 

1(a)-(b)).  

For instance, ANN have been shown [2]–[4] to be well suited for efficient data driven modelling tools 

widely used for nonlinear system dynamic modelling and identification. However, the human brain 

does not use bits for computing operations and deterministic data transmission but employs neurons 

and likely transmits in a nonlinear manner the data via stochastic spikes – short, voltage-based 

increases above a certain threshold (“leaky integrate and fire operation”). These spikes are transmitted 

to other neurons via thousands of synapses. Then, the receiving neuron processes the input 

information (sum of charges from each spike) in a weighted sum operation, where each synapse carries 

its own synaptic weight to the desired output, forming a spiking neural network (SNN) (cf. Figure 1 (c)). 

However, memory and processor are not physically separated in the brain, thus not suffering from the 

inevitable hurdle of classical digital computation, the “von-Neumann Bottleneck”[5] (separation 

between memory and processing unit in von-Neumann architectures=modern computers), drastically 

increasing the energy for inference and learning processes. Thus, one core advantage of neuromorphic 

computing is the ultra-low energy consumption, and any type of existing hardware implementation 

seeks to implement the neuron & related correlations via different means of physical systems and 

principles. Correspondingly, the neuromorphic hardware implementations are then used to run suited 

algorithms for learning and applications such as image and speech recognition, natural language 

processing and nonlinear ways to learn, hence perform classification tasks. Hence, the main goal is the 

physical emulation of neurons and synapses at the small circuit or device level.  
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5. k-NET: Approach  
 

The approach utilized in k-NET is radically 

breaking with all previous approaches and 

establishes a new paradigm in physical 

neuromorphic computing in contrast to 

software-based approaches and therefore in 

AI. The disruptive, innovative approach lays in 

transferring neuromorphic computational 

operations from the real space into reciprocal, 

wavevector k-space. As will be detailed out 

later, this means immediately surpassing the 

von-Neumann bottleneck as memory and 

processing will be united in a single device via 

the achieved hyperconnectivity & 

reconfigurable synaptic weights. In k-NET the 

neurons are represented by – due to the 

geometrical confinement in nanoscale 

structures- discrete spin wave modes. Spin 

waves are low-energy collective eigen-

excitations of (ferro-) magnetically thin films 

from the magnetic ground state at equilibrium. 

Hyperconnectivity is achieved by controlling 

the individual population (synaptic weight) of 

each mode via a mutual coupling exploiting 

nonlinear interactions (dipole-dipole mainly 

and exchange) serving as the synapses. Not only this means a significant decrease in size and, thus, 

increase in neuronal network density but also enhanced operational speed, dynamic control whilst 

requiring a hitherto unachieved minimal number of physical interconnections. The latter not only A. 

fasten up computation, but B. also will also drastically minimize the system’s power consumption. 

Note, that k-NET could be realised as a “traditional” deep neural network by utilizing the plethora of 

nonlinear interactions between discrete spin wave k- modes.  Operating in the nonlinear regime and 

in reciprocal space, in the hidden layers between the input and output layer as in a DNN, k-NET allows 

to directly feed the output of one neuron to the next one similarly to a recurrent neural network the 

individual neurons can experience direct or indirect feedback by the spin wave interactions in the 

nonlinear regime [6] . In the envisioned model of computing, where neurons are oscillatory modes, all 

to all interconnections come for free, from the physics of the problem. There is for instance no need 

to read out intermediate stage neurons. Moving up to k-space architectures allows to solve the 

standing issue of connectivity.  

Indeed, to date, the 3D connectivity of the neurons in the mammalian brain out of reach. A neuron in 

human brain is connected, on average, to 104 other neurons, which is unrealizable by current micro 

and nanoelectronics fabrication processes (that have at most 2.5 dimensionality) [7]. Attempts to build 

analogue neuromorphic hardware that required high interconnectivity  were widely regarded as failed 

attempts such as the historical Intel ETANN chip from the early 1990ies [8].  

Figure 2: Overview on the different approaches for hardware 
implementations based on different physical systems for 
neuromorphic computing. CMOS, memristor and CMOS-
memristor hybrid technologies are technologically most mature 
are limited to the increasingly data hungry world: Limited by von-
Neumann bottleneck (processing speed), size and power 
consumption. Other technologies (bottom) are emerging 
technologies, subject to fundamental research and mostly on small 
scales. Scalability is one main current issue. As a new technology k-
NET is placed there but unique to all others due to the envisioned 
operation in reciprocal (k) space. 
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k-NET attempts to solve this decades-old problem by creating virtual interconnections between 

oscillatory eigenmodes, in lieu of the (unrealizable) physical interconnections. The interconnections 

are realized by inherent nonlinear interactions between oscillatory modes of the magnet. The 

‘neurons’ of the device are the oscillatory eigenmodes, their amplitude and phase representing the 

analogue information. 

Figure 3 Schematics of the layers and connectivity for deep forward neural networks (a) and recurrent neural networks 
(b). A forward deep neural network follows a one-way propagation path from the input to the output layer. If error 
correction is included Backpropagation methods are used to update the input and increase the system’s learning accuracy. 
Typically, all neurons are fully connected, hence the network is “dense”. (b) In a recurrent network there is not only a feed-
forward propagation but the neurons in the intermediate layer can exhibit direct feedback to themselves or indirectly to 
neurons in the same layer.    

As eigenstates of the Hamiltonian, low-amplitude excitation modes of a nanomagnet are orthogonal 

and their time evolution is independent of each other. At higher amplitude this is no longer the case 

and the modes couple to each other, exchanging energy. Hence, that system is an- considering 

different scattering cross-sections between different modes inherently provides all-to-all coupling 

scheme, which is sought after in neuromorphic architectures. The system’s connectivity is expected to 

be much larger than in physically wired systems. The strength of the couplings can be controlled by 

external microwave fields and / or the geometry of the system. The program (i.e. the weights between 

the neurons) is could be provided by the population levels of different spin wave modes or by the 

external field sequence. However, despite the clear advantages & innovative approach of k-NET, the 

core of k-NET relies on the largely unexplored physics of nonlinear interactions and couplings of 

magnons. Generally,  spin based approaches that is spintronics and magnonics  is now at the verge to 

technological maturity [9]–[11]. In view of the final goal of k-NET, the realization of a technological 

readiness level (TRL) TRL 3 demonstrators showing the basic functions of a neuronal network 

operating in reciprocal space it is inevitable to compare the individual aspects of k-NET such as 

challenges and advantages to the other approaches. First, that includes to identify the areas and -if 

existing- algorithms which need to be reshaped for specific use in k-NET or where more theory is 

required. Second, it implies to identify, where k-NET can be placed into the current landscape of 

existing technologies and approaches under investigation as well both from research and industrial 

institutions. Such classification of alternatives technologies compared to k-NET is the objective of the 

first deliverable D4.1 of work package WP4.  
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5.1. Entanglement between Hardware and Software development for AI and 

neuromorphic computing 
 

k-NET represents a fundamentally novel concept for hardware implementation and- at this stage- the 

demonstration of the k-NET conjuncture itself already represents a major scientific and technological 

breakthrough.  A part of the objective is designated to the description of existing algorithms which are 

typically used for classification tasks, mostly using CMOS based technology. This will allow for an 

evaluation of best suited algorithms in k-space for k-NET since software and hardware cannot be 

separated in the same way as it is done in conventional neural networks. Additionally, among k-NET 

objectives is the development of novel concepts of protocols for inference and learning shaped to the 

operation in k-space. As described above, operating a k-NET device requires the design of field 

sequences that implement a certain computing task. Each computing task consists of three steps which 

are: 

(1) initialization  

(2) computing with all-to-all couplings  

(3) readout.  

Step (1) may use a multitude of input frequencies to initialize the modes, and (3) to read out mode 

amplitudes and phases.  The fields of the (2) computing step are the ones realizing a fully connected 

network between the magnon modes. Referring to this, the design of the (2) control fields is a central 

challenge of the k-NET program. Currently, there are two methods being pursued for designing this 

field sequence.  

The first approach is a blind, machine-learning based method that uses backpropagation through time 

(BPTT) for designing a field sequence for classification tasks. The input waveform to be recognized and 

the programming waveform is applied on two separate waveguides – the programming field is 

designed in such a way that when it is jointly applied with the input waveform, the output state of the 

magnet classifies the input.  

The second approach intends to discover the physics of the nonlinear mode interactions and use this 

knowledge to design programming field sequences. For example, by using dynamic mode 

decomposition based on the results of micromagnetic simulations, we attempt to characterize the 

energy exchange between nodes and design the field sequences that map to a standard neural 

network. Additionally, it is possible to exactly write magnetization dynamics in a form of a series, which 

gives another tool for qualitative understanding.   

Notably, the approach we take in k-NET is reminiscent of a quantum computing algorithm. In quantum 

computing (QC) models an exponentially large number of internal states is initialized, evolved and 

read-out to yield ‘exponential parallelism’. While there are no exponentially numerous internal states 

in k-NET, the idea of parallel manipulation of large number of coupled internal states is closely related 

to QC. Quantum-inspired classical computing is now an emerging field and k-NET could be an important 

contender there [12]–[14].  

However, given the current state-of-the art, the focus is now on the hardware to “emulate neurons 

and synapses.” which is introduced by giving an overview on currently pursued physical platforms for 

realizing neuromorphic computing for AI.  
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6. Overview state-of-the art neuromorphic hardware 

implementations: general remarks 
 

To date, there exist various types of hardware realizations of neuromorphic computing which all have- 

when compared to each other- advantages, disadvantages and might be suited for one specific 

purpose in AI – depending on the desired application- better suited than the other (c.f. Figure 2) These 

individual approaches will be discussed in the following to allow a comparison of classification task 

from the alternative technologies compared to k-NET. That allows to place this new technology within 

the landscape of state-of-the art approaches under investigation.  

As mentioned in the introduction, there are two types of neural networks. The “classical” artificial 

neural networks (ANN) operate in a continuous manner (input and output). In artificial neural networks 

the activation function of a neuron needs to be nonlinear and the neuron itself is represented by a 

mathematical function mapped to their real valued input [15]. Generally, ANNs are  fully connected 

and usually realized in form of  deep neural networks (DNN, Figure3 (a)) also known as multilayer 

perceptrons [16]. DNNs employ artificially constructed neurons based on nonlinear multi-valued 

(mathematical) activation functions which are applied to inputs in real space. The corresponding 

artificial synapses control the flow and direction of information in weighted sum operations 

representing the computational process when transmitted between neurons from one layer to 

another one (processing stage).  That is, a deep network contains several intermediate layers between 

the input and the output level. These “hidden” layers allow, for instance, to decrease the 

dimensionality of the data from the input to the output level such as done in the case of image 

recognition, where only the desired image is given at the output [3]. Typically, the neuromorphic 

operations are fed forward from layer until reaching the output but there is no feedback to individual 

or between neurons. If the specific output of one neuron is connected to its own input, or to the input 

of a neuron from a previous layer , that is if there does exist such feedback, one refers to direct and 

indirect recurrent neural networks, respectively being closer to the human way of data processing [6], 

[17].  

 Instead, if an input layer is mapped to a high-dimensional space, the reservoir, in which dynamics of 

physical systems are used to process the information to the output layer. Typically, the reservoir 

remains fixed and the outputs from that high-dimensional physical states is trained. In turn, that 

renders learning in neural networks based on reservoir computing  fast and simple learning such as 

classification remains simple and, consequently consumes much less energy (cf. Figure 6 (c)) [18], [19].  

 Furthermore, the existence and the realization of a dense network of neuron and synapses needs to 

be complemented with suited learning rules and training algorithms [20]–[22]. Accordingly, when a 

neural network is set to solve a task such as image recognition it follows algorithms with either a known 

input and error backpropagation methods (supervised learning) or an unknown input exploiting 

clustering effect via Hebbian learning (unsupervised learning). During that process, the network 

undergoes an inference phase computing the (first) output depending on the (given) input before it 

enters the training phase until the required accuracy is reached.   Although these systems boosted AI 

and nowadays deep learning networks with algorithms with unprecedented accuracy (>99% exist [23], 

[24]), they exhibit complex and dense circuitry due to the number of physical connections. Among 

these approaches one can place CMOS, CMOS-memristive hybrids and artificial neural networks which 

are based on Photonics [25]. The information flow is still based on electrical current, which implies all 

drawbacks of involvement of electronic charge such as Joule heating, as compared to spintronic based 

approaches (c.f. Figure 6 and references therein) [26], [27]. In addition, traditional ANNs do not mimic 

the brain’s functionality  since- as previously mentioned- the brain does not encode information 
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deterministically but rather   use stochastic spikes to transmit the information [7]. Deep neural 

networks realized in classical von-Neumann computers are highly energy inefficient whereas brain-

inspired, spiked Neural networks, can run much more energy efficiently and consume much less energy 

(1011 spiking neurons in the brain required 30 W compared a factor 1000x more to the same number 

of transistors in a supercomputer) [7] 

The second class of systems and the respective hardware emulations are spiking neural networks (SNN) 

which indeed seek to function as the brain, using time-dependent gating of spikes such as via voltages 

[7], [15], [28]. They are envisioned to be more powerful and consume less power but suffer from lower 

learning accuracy as will be detailed out later.  

Models such as “spike-dependent plasticity (STDP)” and feedback-based modulation techniques have 

been established in the past decade using leaky integrate and fire neurons. These types of neurons are 

comprised of a leaky capacitor in its simplest form, summing up the current from the synapses. The 

synapses are based on a threshold modulation of a physical effect (as for k-NET) to modulate the 

synaptic weight accordingly to the threshold modulation.  

Spike based neural network (SNN) computing allows to simplify the related neuromorphic hardware 

implementations  and consume only energy during the short time window of the spike activation [7], 

[28], [29]. In addition, natural synapses & neurons exhibit a plethora of functionalities beyond the 

spiking behaviour such as their stochasticity, leaky memories and integrators respectively[7], [15], [23]. 

Moreover, SNNs can show oscillatory and the possibility of synchronized behaviours. The latter, if 

implemented into physical systems can augment ANN and AI to the next level in the realm of the 

industry 4.0.  

In this regard there is high interest in the implementation of SNNs which are truly brain inspired and 

there are various approaches. Among these approaches are spiking CMOS-memristor systems using 

non-volatile memory systems as mentioned above (True North Chip from Intel[30], Spinnaker Project 

of the EU Human brain project for edge computing and internet of things (IOT) [21], [31]–[33]) which 

is technologically most mature now. However, SNNs still need to exceed the performance from 

traditional DNNs and learning algorithms which equivalent as backpropagation algorithms from deep 

learning[29]. Furthermore, there are spintronic, oxide and 2DEG based approaches as well as detailed 

out below. 

 In general, the technological approach with the highest level of maturity are pure CMOS and CMOS-

hybrid systems., mostly based on ANNs. The latter frequently use voltage-control on information 

transmission (synapses) via resistive switching also known as memristor devices. (RRAM, oxide based 

memristors) or photonics-based ones (c.f. Figure 4 & 5). However, they suffer from drawbacks such as 

high energy consumption and bulky (cf. Spinnaker and BrainscaleS realizations) for the first or lateral 

sizes cannot be decreased below the optical wavelength (~1 µm) for the latter [15]. For instance, an 

event driven CMOS-neuron uses 9 µA for total bias current and consumes 40 fJ/spike/synapse [23], 

[34].   

We believe that k-NET devices are most straightforwardly compatible with supervised learning tasks, 

albeit the learning algorithm will require ‘conventional’ external circuitry or software-based algorithms 

to tune programming field sequences. It is envisioned, that the strength of a given mode coupling could 

change continuously, with mode amplitudes and phases, allowing the straightforward use of 

backpropagation methods - or possibly with a different type of machine learning algorithm. An 

important goal of k-NET is developing a model of nonlinear mode coupling that enables efficient 

learning algorithms. 
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6.1. Description of neuromorphic neural networks based on CMOS technology 
 

Complementary metal-oxide semiconductor (CMOS) technology is the technological basis for today’s 

communication and information processing. For decades it was fuelled by the continuous 

miniaturization of metal-oxide semiconductor transistors (MOS, Moore’s law) until today joule heating 

and leakage currents do not allow for further miniaturization.  Additionally, in computers, the memory 

and the processing unit are physically separated which limits information processing and computation 

speed, known as the ‘von-Neumann’ bottleneck (cf. [5] for instance) . One solution is to employ in-

memory computing (c.f. [16]), which has been already applied to pattern classification [35], [36] or 

analogue image processing [37] and it is also applicable to neuromorphic computing applications based 

on CMOS. The implementation of DNNs and SNNs can for instance, allow for more energy-efficient in-

memory computing and high scalability. 

Among others, the foundation of CMOS based neural networks are memory transistors which form the 

basis for non-volatile storage applications.  They consist of mainstream MOS transistors [16] which can 

accommodate a charge-storage layer within the gate which can be implemented in form of NAND [38] 

or NOR flash architectures [39]. The stored charge can be tuned by well-established Fowler-Nordheim 

tunnelling for program and delete and channel hot electron injection (CHEI) for program operations 

only. However, the program and delete process is limited to < 105 operations. Whilst NAND is suited 

for large data storage for the cost of long processing times (~µs), NOR flash technology is fast but only 

suited for small data packets. The subthreshold regime of an n-channel floating-gate memory and 

related variation of the device threshold voltage (synaptic weight tuneability) can be used to emulate 

the synaptic behaviour and, hence, for neuromorphic computing with CMOS technology. The synaptic 

transistor includes an additional contact to overcome a ‘standard block-erase’ scheme. In combination 

with deliberately rerouting standard NOR Flash memory single-cell selective erase operations can be 

enabled while keeping the overall cell structure unaltered as shown with 180 nm technology ( Silicon 

Storage Technology ) technology NOR arrays [40]–[43]. Although promising for ANNs, the statistical 

nature of the electron injection in the floating gate in NOR flash memory in the program phase leads 

to program noise. In combination with random telegraph noise from variation in the threshold voltage 

due to tunnel-oxide defects, the finite tuning precision of the threshold is problematic for DNN 

inference and limits also the system’s stability in the offline training phase. To this end, that instabilities 

limit the system’s scalability and classification accuracy.  
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For machine learning application, the traditional algorithms run on central processing units (CPUs), 

graphical processing units (GPUs)- mostly used for DNNs-, field programmable gate arrays (FPGAs) and, 

recently, on digital or mixed signal application specific integrated circuits (ASICs).  

Using the third generation of artificial neuron models, SNNs, neuromorphic systems based on CMOS 

have been implemented by various research projects and international companies such as SpiNNaker 

from the University of Manchester, TrueNorth from IBM, Loihi from Intel,or BrainScaleS from 

Heidelberg University ( c.f. Table 1 and  [44] and references therein).   

6.2. Memristive: 
 

Nanoscale, resistive memory (“memristive”) devices are another emerging class which is well suited 

for neuromorphic computing using SNNs. These devices employ non-volatile memory storage, and the 

information is stored in their system’s specific resistive or conductance state. As shown in Figure 4 

there are different types of memristors with different physical mechanisms for changing the resistance 

state such as phase transitions [Figure 4 I (c)] or spintronic effects [Figure 4 I (i)], and hence different 

current-voltage characteristics (Figure 4 I (b, d, f, h)). Additional to the tuneable resistance, memristive 

devices employ accumulative behaviour with a continuous increase or decrease of the associated 

resistance. The typical arrangement of memristive neuromorphic hardware in form of crossbar arrays 

[16], [34], [45],  allows to achieve synaptic efficacy and plasticity such as spike -timing dependent 

plasticity (STDP, [46]). Synaptic efficacy describes the strength of the of input (presynapse) to influence 

Figure 4 Overview on the individual approaches for non-volatile memory (memristive) approaches, often employed in a 
hybrid system together with CMOS based architectures. I (a)- (h) display the schematics of physical principles and the 
current-voltage characteristics for common two-terminal memristive devices. These are conductive bridge or oxide resistive 
Random-access Memory (RRAM) where the resistance state depends on the formation of a filament. For Phase Change 
Memory (c, d) the resistance depends on the size of the crystalized volume and the amorphous region, whilst ferroelectric 
RAM (e, f) depends on the polarization of the electric dipoles. In Superconducting systems with a magnetic Josephson 
Junction, the resistance depends on the degree of magnetic order within the barrier. For the STT-RAM (i, j) a tunnel layer is 
sandwiched between the free and the pinned layer, the resistance depends on the relative spin alignment of the magnetic 
layers. Figure adapted from Ref. [11], [29], [48].  
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the output (post-synapse) whereas synaptic plasticity refers to modulations of the synaptic weights 

during operation (execution of the learning algorithm) of the ANN [47].   

 

Figure 5: Three terminal memrisitive devices: It displays the schematics of II(a) the ferroelectric field-effect transistor where 
the threshold voltage of the transistor is modulated by the ferroelectric switching II (b) Electrochemical RAM where the channel 
conductivity is controlled by ion (Li+) migration and II (c) Spin-Orbit Torque RAM where the polarization switching in the free 
layer of the magnetic tunnel junction is induced by a current flowing in the heavy metal. Figure adapted from Ref. [11], [29], 
[48]. 

Typically, non-volatile memory is ranging from RRAM (CBRAM, oxide RRAM: resistance change by 

filament formation) [23], spin-torque [26], [27] , phase-change RAM [48] or voltage-induced control of 

ferroelectric field effect transistors [49] .  The necessary activation voltages are weighted by the 

conductance of the memristors. The resulting current is the sum from that weighed input. 

In general, memristive device approaches can be divided into two- terminal and three-terminal devices 

(c.f. Figure 4 and Figure 5). They are attractive to neuromorphic computing because of their capability 

of low-power operation, nanoscale site, analogue resistance technology and in-memory computing as 

well [16]. These systems have already demonstrated primitive cognitive tasks such as pattern 

recognition in neuromorphic networks [35], [50]–[52]. The two-terminal structure of RRAM, PCM, 

FeRAM or STT-RAM is similar. Between two metallic layers, also used as the top (TE) and a bottom 

electrode (BE) an insulating layer is stacked. The application of a voltage pulse induces a change of the 

physical properties in material of the switching layer. Hence, the corresponding physical property used 

to emulate the neuromorphic behaviour changes and to perform basic information processing by 

electrical operations on the memristive devices. Whilst the resistance is altered for RRAM and PCM & 

superconductor memristors, it is the electrical polarization for ferroelectric RAM and the magnetic 

polarization for STT-RAM (cf. Figure 4 I (a, c, r, g, i)).  

RRAM relies on the formation and destruction of filaments to modulate the conductance. Depending 

on whether one uses a conductive bridge mechanism or an insulating oxide layer as switching layer, 

there are two types known as CBRAM or OXRAM, respectively. Further descriptions on the physical 

mechanisms can be found in the description of Figure 4 in short and extensively in Ref. [16], [23], [53]. 

As said, each architecture has specific advantages and drawbacks compared to each other. For 

instance, RRAM and PCM approaches employ dynamic ranges of programmable conductance states 

>100 (cf. [[16] and references therein) compared to 2-3 for STT-RAM devices but suffer from 

comparably low endurance. However, STT-RAM devices are envisioned to exhibit tremendously high 

endurance. On the circuit level wiring also limits the system’s performance. Despite these drawbacks 

memristive synapses have potential for signal processing applications. For instance, using an SNN 

based on plastic PCM synapses and unsupervised learning temporal correlations could be detected 

[54].   

Further, there are three-terminal memristive devices such as the ferroelectric field-effect transistor 

(FeFET), electrochemical RAM (ECRAM or spin-orbit torque (SOT) RAM (c.f. Figure 5 (a)-(c)). For 
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instance, the FeFET approach allows to overcome constraints from the two-terminal FeRAM devices 

which can suffer from transient read currents and destructive read operations [16]. They were already 

implemented to memory arrays using 28 nm CMOS technology and are promising for 3D systems [16], 

[55], [56]. On the other hand, ECRAM were shown to operate in the nanosecond regime, which could 

substantially speed up training operations for ANNs whilst the decoupling of read/write current paths 

in SOT-RAM could enhance the endurance compared to spin-transfer-torque (STT)-RAM (cf. section on 

Spintronics).   

However, all memristive approaches suffer from temporal, temperature-dependent variations in the 

conductance states and the nonlinearity and stochasticity related to the accumulative behaviours is 

problematic for up-scaling[57].  Additionally, note that memristors still employ Ohm’s and Kirchhoff’s 

laws which results in an enhanced circuit overhead. Thus, the energy consumption and area of the 

devices are increased as well. Correspondingly, that is disadvantageous in view of increasing demands 

for data storage, computational and processing capabilities the energy consumption needs to be 

minimized. Summarizing, no emerging memory device can unify all metrics of any neuromorphic 

network and its applications to date [16].   

6.3. Hybrid CMOS-memristive systems 
 

In CMOS-memristive hybrids, the synapses and respective neural network weights are stored in an 

array of non-volatile memory which are typically arranged in form of crossbar arrays and typically 

standard CMOS circuits (analogue or digital) serve as the “neurons”.  

Another common problem of both approaches is that despite being already commercially available in 

the case of the CMOS based systems and ultrafast operational speeds in the case of the photonic 

system, the size of the neurons is not translatable to the nanoscale and thus the density of the 

respective neural networks will remain sparse. The utilisation of hybrid CMOS non-volatile memory 

circuits, mainly memristor based currently suffers from cell-to-cell variations of the switching 

threshold which leads to variations of the synapses. Furthermore, typical RRAMS exhibit a relatively 

low resistance in the low resistance state (LRS) ~kΩ and high-power consumption in the CMOS driver 

circuits [58]. The resistance can also undergo time dependent drifts which are in themselves also 

temperature dependent and will lead to decrease the accuracy at the output. Apart from that, the 

number of write cycles is limited on such devices and hence these systems exhibit a limited endurance 

as well.  

Thus, recently new approaches spanning fundamental research and technological maturity have been 

explored. These include hardware implementations employing photonics, spintronics (c.f. Figure 6), 

low-dimensional structures such as two-dimensional electron gases (2DEGs) (c.f. Figure 7) or even 

based on superconductivity (c.f. Figure 4 (g), (h)). Specifically, spintronics approaches, where the 

electronic spin instead of the electronic charge serves as the principal information carrier, can operate 

in the nanoscale but currently lack scalability towards large-scale implementations. Furthermore, 

existing implementations of spintronic neurons, and their interconnections, i.e., synapses, operate in 

real space using physical interconnections (c.f. Figure 2).  

The neurons can be also mapped into different time delays if the time-delay architecture of reservoir 

computing is employed [59]. Hence, they require a careful design and structuring of the individual 

nonlinear elements. The latter does not only increase the systems complexity but limits the 

connectivity.  
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This will be especially become problematic when future neuromorphic spintronic chips are about to 

be integrated into current CMOS networks and using algorithms running on conventional computers, 

i.e., von-Neumann architectures.  

6.4. Description of neuromorphic neural networks based on photonics  
 

Significantly faster than hybrid-CMOS systems are photonic networks employing optical nonlinearities 

such as the Kerr effect for the emulation of the neurons and for the synapses interferometrical & phase 

control methods [15], [60]–[62].  

Photonic synapses can be implemented electrically controlled via waveguide interferometer meshes 

[61] or all optically via PCM based photonic synapses or amorphous metal-sulphide microfibres [63], 

[64]. On the other hand, photonic neurons can be realized by either electro-optical or all-optical means 

such as silicone photonic modulator neurons, superconducting optoelectronic neurons [65], [66]or 

again PCM based spiking neurons [60], respectively.  

Although being ultra-fast in terms of operation due to the utilization of photons and the possibility to 

realize passive neural networks (minimizing again the energy consumption) this approach is limited by 

the minimal size associated to optical wavelengths. Also, optical systems are mostly 3D structures and 

challenging to realize them in a chip-scale device. Thus, they are not best suited for the application 

spaces pursued in k-NET but yet show great potential for computationally hard problems [25]. 

6.5. Description of neuromorphic neural networks based on spintronics  
 

Spintronics, also known as spin electronics, uses the electronic spin and its associated magnetic 

moment as the central carrier for information processing. Though still a nascent market, spintronics is 

about to be implemented on a large industrial scale.  For instance, spintronic based MRAM technology 

are progressively replacing DRAM memories [67] and- for instance- actively  investigated for in-

memory computing by companies such as Samsung [68]. Other possible applications of spintronics 

devices are in radiofrequency applications that may benefit from the physics of spin-transfer torque 

nano-oscillators (STNO), spin diodes, spin filters, devices based on giant- or tunnel- magnetoresistance 

or pin-transfer-torque devices. Spintronic devices exhibit almost unlimited endurance, non-volatile 

memory, and ultra-fast dynamics due to typical frequency ranges from GHz to THz for ferromagnets 

and antiferromagnets, respectively. The electronic spin also inherently has some similarity to 

constituents of neural networks [27]. 

Since flipping of one spin is a stochastic process it is naturally analogous to the stochasticity of the 

firing of spikes in the brain. Therefore spin-based electronic is not only most promising beyond- CMOS 

devices, spintronics is also highly promising for neuromorphic computing.  

As displayed in Figure 6, there are various spintronic technologies for neuromorphic hardware and 

computing, which are currently investigated. These are, magnetic tunnel junctions (MTJs) (Figure 6 

(a)), – very recently- antiferromagnets (Figure 6 (b)), spin-orbit-torque (Figure 6 (c)), skyrmions (Figure 

6 (d)) and domain-wall propagation (Figure 6 (e)), where the latter three can also be classified as 

spintronic memristors.  Among MTJs there are nano oscillators and superparamagnetic MTJs.  

6.5.1. Magnetic tunnel junctions (MTJs) 
In an MTJ a tunnelling layer is sandwiched between two ferromagnetic layers whose magnetization 

acts as a fixed and a free layer respectively. Additionally, to prevent undesired switching by exchange 

bias the fixed layer is usually coupled to antiferromagnetic layer. When the magnetization of the free 
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and fixed layer is parallel (antiparallel), the 

corresponding tunnelling magnetoresistance 

of the MTJs is low (high). The manipulation of 

the free layer can, for instance, be conducted 

by spin-transfer-torque (STT) where transfer of 

spin angular momentum occurs through the 

passage of a spin-polarized current. Apart from 

their endurance, MTJs exhibit high thermal 

stability, comparably good scalability and low 

readout time, which resulted in the – still 

ongoing- development of STT-MRAM[27]. 

There are spin-torque nanoscillators (A) and 

superparamagnetic MTJs (B) 

A. Spin-torque Nanooscillator (STNO) 

The spin dynamics of the free layer is governed 

by the Landau-Lifshitz--Gilbert-Slonczewski 

equation (LLGS) which describes damped 

precessional motion with spin-transfer torques 

[15], [69]. When a direct current is injected into 

an STNO, it can be driven to the auto-oscillation 

regime in which magnetization precesses 

continuously [70], [71]. This is due to the 

presence of a specific orientation of the STT 

which leads to an additional anti-damping 

torque which can balance the damping torque 

from the LLGS. STNOs exhibit a nonlinear 

voltage-current dependency and are highly 

tuneable in frequency, amplitude and 

electrically controllable. A STNO mimics the 

spiking behaviour of a biological neuron by 

generating periodic output voltages if 

periodically driven and the magnetic damping 

takes the role of the leaky behaviour of that 

neuron [26], [27].

The biological neuron integrates the incoming signal with leakage and fires an outgoing spike when a 

certain threshold is reached, thus under a periodic drive it will fire periodically as well [72].  

Additionally, under external microwave drives ([73], [74]) or mere proximity such as via direct 

exchange interactions  [75]–[77], STNOs can enter synchronization with other STNOs and hence build 

the basis for upscaled neuromorphic networks [78], [79].      

B. Superparamagnetic MTJs [80]–[85] 

Recent results from neuroscience indicated the brain uses stochasticity in the biological neurons and 

synapses to reduce the brain’s energy consumption  [26], [79], [86]. Stochasticity allows to rapidly 

sample a large parameter space in order to find optimal solutions. 

Thus, by decreasing the thickness of the free layer of the MTJ below the superparamagnetic limit such 

that the energy barrier between the parallel (RP) and antiparallel, Rap state is in the same order than 

the thermal energy. Thermal fluctuations induce transitions between the two states in the free layer 

(cf Figure 6 (b)) with equal probability. The application of an electric bias changes the switching 

Figure 6  Overview on the spintronic based approaches. A. Spin 
Torque Nanooscillator implementations where (a) shows 
magnetic tunnel junction. The resistance is high (low) in the 
antiparallel (parallel) state. (b) Nanooscillators (c) Stochastic 
magnetic tunnel junctions. B. Overview on memristors based on 
spintronics. (d) Concept of a domain wall memristor which can 
be moved by current, for instance, the skyrmion memristor (e) 
and (f) a fine magnetic domain tunnelling memristor.  Adapted 

from Ref.  [20] 
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probability and hence controls the firing as a Poisson process- as in biological neurons [83]. Hence 

superparamagnetic MTJs allow for the realization of low-energy neurons. 

 

6.5.2. Antiferromagnets  
Collinear antiferromagnets are characterized by the antiparallel alignment of neighbouring spins in a 

magnetically ordered material due to the negative sign of the Heisenberg exchange constant. Similarly, 

to ferromagnets, antiferromagnets can be manipulated via SOT but operate at much higher 

frequencies (~THz). Furthermore, given the antiparallel alignment of the spins, antiferromagnetic 

systems are much more robust against perturbation with external fields. The antiparallel alignment of 

neighbouring spins results in a zero net magnetization and hence vanishing stray fields which would 

supress magnetic crosstalk in densely packed structures in the future and yields higher scalability. 

However, this approach is much at its infancy and is currently hindered by the low readout signal.  Most 

mature are currently AM/FM heterostructures which induces memristive behaviour via exchange bias 

in the ferromagnet.   

6.5.3. Spin-orbit torque (SOT) [87]–[89] 
Spin Orbit Torque originates from the coupling between the electronic spin and orbital angular 

momentum, also known as spin-orbit coupling. For instance, in a normal metal- ferromagnet bilayer 

system, a transverse electric current in the normal metal layer induces a net spin polarization (Spin-

Hall-Effect) which exerts a torque on the ferromagnetic layer and can drive magnetization oscillations.  

The transverse current flow in the normal metal layer compared to current directly passing through 

the junctions as for devices based on STT, i.e., STNOs, SOT based systems are more versatile.  They 

allow to consider new material classes such as oxides [94-96], 2D materials [97-99] for neuromorphic 

computing as well (cf. Section on lowdimensional materials).  

Compared to STT driven devices, SOT based magnetization switching and their energy efficiency is 

envisioned to be higher, because of the magnetization switching is not limited by  incubation times 

due to thermal fluctuations and the torque/electron is estimated to be higher, respectively [87]. 

Correspondingly, a spin Hall nano-oscillator (SHNO) is driven by the SOT. By synchronizing 2D arrays of 

mutually synchronized SHNOs, the connectivity can be improved [90]. However, this approach is still 

at its infancy compared to the other ones.  

6.5.4. Skyrmions 
Magnetic skyrmions are topological spin textures in a chiral magnet and can also be regarded as 

solitons. Similarly, to DW propagation, a skyrmion can be manipulated and moved by SOT. The 

nonlinear resistance changes in magnetic skyrmions upon motion for instance can be used for the 

implementation of skyrmionics memristors [91]–[93].  The particle-like nature and the thermal 

Brownian motion of skyrmions would allow to represent the spintronic implementation of the 

biological leaky integrate- and fire neurons. Although simulations demonstrate the resistance could be 

tuned by controlling the interplay between STTs and anisotropic magnetoresistance and use the 

output voltage for the implementation of skyrmionics synapses, experimental demonstration is 

currently lacking.   

6.5.5. Domain wall propagation  
A domain wall, which is an example of a one-dimensional magnetic soliton, separates magnetic 

domains – uniformly magnetized areas – in a magnetic material [26], [94].  . Spin currents can also 

move domain walls through spin-transfer-torque (transverse current leading to current-induced 

domain wall motion) or spin-orbit torque, while the domain wall position can translate to a variation 

of the device resistance. [95], [96]. Back and forth domain wall motion can be used as a  memristor 
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which is non-volatile with a high degree of plasticity [94], [97], [98].  Furthermore, as for skyrmions the 

depinning and motion of magnetic nanostructures is inherently stochastic and together with magnetic-

domain wall-based logic can be used for neuromorphic computing.  

6.6. Description of neuromorphic neural networks based on low dimensional 

devices 

 

Figure 7 Overview over low-dimensional nanoelectronics’ approaches for neuromorphic computing. (a) 0-Dimensional 
approaches which depending on the extension include organic molecules [99], semiconducting quantum dots [100], [101], 
metal nanoparticles [102] and quantum confined electron gases (e.g. [103]). (b) Overview on one dimensional (1D) approaches 
which include carbon nanotubes (c.f. [104]–[106]), nanowires [107], [108] or polymers [109] . (c) Overview on two-dimensional 
(2D) approaches, under which memtransistors [110], atomic switches [111], monolayer memristors [112], [113], CDW 
phases[114]] and phase transitions [115] belong to. (d)-(e) Comparison of all nanoelectronics’ low-dimensional approaches 
for ON/OFF ratio and operating voltage, respectively from Ref. [20]. Figure  adapted from Ref. [20] . 

A new class of low-dimensional nanomaterials is comprised of zero-dimensional (0D), one-dimensional 

(1D) and two-dimensional (2D) approaches as shown in Figure 7 (a)- (c).  Whilst the 0D and 1D 

nanomaterials allow highly sensitive functionalization and redox chemistry for multi-bit states 2D 

architectures can provide in-situ probing, spatiotemporal responses and a platform to implement 

multiple electrodes [110], [116], [117]. The lower dimensionality of such systems could also enable 

once wearable neuromorphic applications [118].  

Due to their optical properties and controllability, 0D nanomaterials are well suited for neuromorphic 

implementations in photonic systems such as optoelectronic synapses. The utilization of photonic 

devices can enable the required parallelism and hyper-connectivity for ANNs. For networks, for 
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instance 0D quantum dots are investigated due to their multi-band emission and 0D type memristors 

were realized, which are controlled by electrical and optical pulses [103], [119].  

Based on QD arrays quantum neural networks or other neuromorphic architectures have been 

proposed as well. 1D structures are comprised of carbon nanotubes, nanowires or utilize polymers 

(Figure 7 (b)). For instance, it was demonstrated that depending on the choice of doping (p- or n-) of 

carbon nanotube thin-film transistors, it is possible to convert the relative timing information into 

pulse amplitudes which is relevant for an easier implementation of STDP [120]. The electronic 

properties of such systems are also highly sensitive to adsorbates and hence could be used for sensing 

in neuromorphic nanosystems [106]. Volatile and non-volatile, i.e., memristive behaviour, that is 

resistive switching was shown with nanowires which behave fairly like carbon nanotubes.  They could 

be used to emulate the morphology of biological nerve fibres or biological ion channels [121]. Polymers 

have been employed for mechanically flexible nanoscales memristive systems [122]. 

2D approaches follow the standard memristor principle and can offer the integration with planar wafer 

technology with high switching ratios (~104). Different approaches are listed in Figure 7 (c) for 2D. For 

instance, graphene-based synapses show tuneable plasticity. Synaptic transistors in black 

phosphorous, which is also a promising material for anisotropic synaptic response due to its in-plane 

electronic properties, were investigated as well [123]. 2D materials can be also used to realize 

memristive behaviour and transistors  functionalities in one device which are usually not compatible 

and are also known as memtransistors by using separate layers [110].   

The individual properties of all approaches can be found, for instance, in Ref. [20] and references 

therein for more details, but these are beyond the scope of this report. Nevertheless, Figure 7 (c) 

shows a state-of-the art comparison of the switching ratio vs. the channel thickness ( 7 (d)-(e)) and of 

the response time vs. the operating voltage for synaptic transistor for low dimensional nanosystems, 

taken from Ref [20]. However, to date, most low dimensional approaches are at the level of 

fundamental research, i.e., proof-of-concept level, and hence will be not further mentioned in the 

discussion on classification tasks in the next section.  

6.7. Other approaches: Organic materials 
It is worth mentioning that there is also an emerging class of organic materials with a low energy 

consumption but can be also highly mechanically flexible. Furthermore, due to their organic nature 

they are biologically compatible. However, they are comparably slow during operation and suffer from 

a limited accuracy due to the instability of organic materials [99]. The reader may refer to numerous 

excellent reviews for further information on this approach, which is a research field in its own right. 

For instance, see for Ref. [124]–[127] and references therein.  

6.8. Spin wave-based approaches such as k-NET: Assets of magnonics 
Magnonic structures have unique benefits that distinguish them from other emerging approaches for 

neuromorphic devices. Broadly speaking there are three fundamental benefits: 

1. Magnonic devices are highly interconnected, which was also a significant 

benefit of photonic device  
2. Nonlinearities come for free in magnonic systems and appear already at 

moderate magnonic intensities  

3. Magnons carry and process information at high speed while using low power. 

Specifically, for (1) there are a number of devices that imitate optical computing models ( cf. Ref. [128], 

[129] ) and these devices do not require internal interconnections. Specifically, all operations can be 

performed in the magnonic domain.  There exist as well design methods for building magnonic versions 

of optical device components [130]. 
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As for (2), magnonic behaviour starts to become nonlinear beyond a few degrees of precession angle, 

which is readily achieved in most device setups still at low power levels. This is in sharp contrast to 

optics, where typically high intensities are needed to show any nonlinearities. Nonlinearities are 

required for any non-trivial computation and are essential to neuromorphic devices.   

Regarding (3), it is well known that in electronics on can often trade in speed for power, and low-power 

integrated circuits are slow by design. Magnonics is uniquely capable of low-power processing while 

maintaining high speed. Magnonic wave conduits can transmit information at Gbit rates, while 

consuming potentially well 1 eV transmitted bit [10]– such characteristics are unmatched by electronic 

systems. 

For a more detailed benchmarking effort, see Ref. [131] and references therein. In general, magnonic 

devices fare well in these comparisons. An important message in Ref. [131] is that to benchmark 

neuromorphic hardware, one has to consider the cost of interconnections and overhead coming from 

device interconnections. In high-interconnected structures the energy cost of interconnections could 

be much higher than the cost of the neurons itself. This overhead does not necessarily appear in 

magnonic devices and does not appear in k-NET either. 

6.8.1. Inverse-designed magnonic scatterers   

Very recently it was shown that propagating spin waves can perform highly non-trivial classification 

tasks and that such nonlinear dynamic systems can be inverse-designed using machine learning 

methods [132].   

The device proposed by Papp et. al. (Ref. [132]) uses nonlinear spin wave (magnon) interference to 

perform classification tasks. The waveform to be classified is applied to a waveguide and this 

waveguide launches propagating spin waves in a YIG film. The YIG film is patterned in such a way that 

the nonlinear spin wave scattering performs vowel classification – for example, the magnons are 

focused to particular areas in the film depending on what is the waveform (vowel) that was applied on 

the waveguide. The device of Papp et. al. uses propagating spin waves, not confined modes as targeted 

in k-NET. However, both systems use nonlinear magnon interactions to do classification. The successful 

application of machine-learning methods by Papp et. al. suggest that machine-learning is a viable route 

to train k-NET devices.  Note that in general - despite the specific approaches and their advantages and 

disadvantages- a large scale integration of any neuromorphic hardware implementation on an 

industrial level requires high neuronal network densities and hyperconnectivity (>1000 

synapses/neuron) to perform fundamental tasks in AI. The most advanced platforms are based on 

CMOS o CMOS/memristive hybrid systems but suffer from problems as detailed out such as being bulk 

and being still von-Neumann architectures.  

6.8.2. k-NETs envisioned assets compared to other neuromorphic hardware 

implementations. 
 

In small, confined geometries, spin wave (SW) modes become quantized and then only populate a 

discrete set of modes in reciprocal space (k-space). Hence, they exhibit a discrete set of resonance 

frequencies as well. In the picture of a harmonic oscillator and in the linear regime, each SW mode can 

be considered as an independent oscillator. However, if the system is driven into the nonlinear regime 

this independent behaviour is not valid anymore, and the system become highly coupled.  

As said, magnonics, the research field associated to use magnons, i.e. the quanta of spin waves as 

central information carriers frequently employs the resonant energy absorption of the ( for k ≠0, 

propagating ) collective spin excitation at specific (magnetic) fields and frequencies for manipulation, 
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transport and read out of the information encoded in the SW modes [133]. Intrinsic nonlinear 

interactions in ferromagnetic systems couple the SW modes together.  In the case of sufficiently large 

drives, i.e., deviations from the SWs ground state, these effective fields render the SW dynamics 

nonlinear.  

The strength of the respective nonlinear interaction in k-space depends mostly on the SW amplitude, 

which is related to the population of a specific mode. Controlling the synaptic weight therefore 

involves controlling the population in the SW modes. That control can be obtained by transverse and 

parametric pumping with external magnetic fields, which can facilitate mode conversion through a 

number of different nonlinear processes. The inherent property to unify all oscillations and 

interactions (neurons & synapses) in a single entity, represents a great asset of the k-NET approach 

compared to previous approaches employing nonlinearities and multiplexed frequency inputs. The 

single entity of k-NET is a single resonator which means that the von-Neumann bottleneck can be 

immediately surpassed. No circuitry to make the link between neuron and synapse is required.  The 

absence of additional circuitry is expected to simplify the system’s complexity, size, energy 

consumption and operation speed as their connections required in real space operating approaches 

do not exist and thus do not slow down the computation process. Furthermore, as information is 

encoded in magnons and magnon currents, no joule heating from the neurons and synapses 

themselves is involved. The main dissipation will come from the employed radio frequency antennae 

but as there is only the need of few to achieve the drive, the circuitry is less dense than conventional 

CMOS, or CMOS-memristor or other comparable systems. Thus, operation at the nanoscale and of 

multiple dense neural networks is envisaged.  

7. Technology comparison: Different approaches for classification 

tasks: 
7.1. General introduction: Discussion on DNNs and SNNs for training and classification 
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Figure 8: Overview over other structures for learning and classification than only DNNs or RNNs (cf. Figure 3). (a) Deep 
neural networks, fully connected with one or several hidden layers between the input and output (b) Convolutional neural 
networks (c) Recurrent neural networks (d) Long/Short Term Memory Networks (LSTM)(e) Principle of reservoir computing. 
An input layer is given to a reservoir where the system undergoes nonlinear interactions with several interconnections and 
outputs trained weights to the output layer. 

Broadly speaking, neuromorphic machine learning for classification tasks employs the training of the 

synaptic weights until the desired accuracy is reached.  

Generally, the traditional deep learning techniques with using backpropagation show the highest 

classification accuracy but these networks are feed-forward networks, typically larger in size and 

slower due to the complexity of both the interconnections and the iterative error-reduction methods 

in backpropagation for complex models. Other methods for classification tasks are ones based on 

reservoir computing and on spiking (recurrent) neural networks. Whilst the first uses a pre-processing 

step to obtain linearly separable data via a recurrent reservoir, the second is also known as 

Evolutionary Optimization of neuromorphic Systems (EONS) where the recurrent spiking 

neuromorphic network systems are trained via specified algorithms. Deep learning algorithms include 

the Perceptron, the multi-layer perceptron, convolutional models such as Conv and LSTM (Long-Short 

Term Memory) (c.f. Figure 8). Perceptron based models are fully connected (dense). Compared to 

perceptrons with only two layers (input and output) multi-level perceptron networks are known to be 

good classifiers as they also employ multiple layers and nonlinear functions in the same time. 

Convolutional models were first developed for handwriting recognition and useful for different input 

forms [134]. However, for learning concerning higher dimensional features and time-series data, 

stacked layers with LSTM are better suited. On the other hand, training a spiking neural network aims 

to define the connections, thresholds, weights, and delays such that the classification task can be 

accomplished. That means that the collection of data points from a dataset their values must be 

converted into spikes and the output classifiable again.    For instance, a Neuroscience Inspired 

Dynamic Architecture (NIDA) has successfully shown to be applicable to data control and classification 

[135], [136]. However, NIDA is dynamic, and backpropagation cannot be used. One solution is there 

using EONS which relays on updating fitness values from an initially randomly generated network by 

choosing the highest fitness values per iteration until a desired threshold is reached.  

In general, classification applications originate from a plethora of field and algorithm from above is 

better suited for one specific application than the other. Most common ones are the MNIST (Modified 

National Institute of Standards and Technology) for handwritten digits recognition or the CIFAR-10 

(Canadian Institute For Advanced Research) dataset with 60,000 32x32 colour images in 10 different 

classes for image classification [137]. Additionally, there are less used ones such as old IRIS (image 

recognition) dataset for flower recognition, RADIO dataset for training signal-to-noise ratios or 

datasets for consonant vs. vowel, i.e., speech recognition tasks such as TIMIT.   

Discussion on SNN based learning for improved neuromorphic computation 

In principle, SNNs are advantageous to mapping non-spiking AI algorithms to real systems but, to date, 

their main limitation to technological maturity is the lower classification accuracy after inference and 

learning steps. There are SNNs which are converted from trained ANNs using ANN-SNN conversion and 

there are direct SNNs which are derived from spike- based training. The first method which is also used 

by Intel’s True North Chip and Spinnaker improved a lot the power efficiency compared to previous 

attempts, but the estimation of the spike rate required non-trivial passages of time [28], [29]. It has 

been proven, in fact, that spiking neurons are fundamentally more powerful computational units than 

traditional artificial neurons. However, one issue for SNNs is the implementation of efficient learning 

algorithms which are equivalent or outperform existing types of DNNs with backpropagation for error 

minimization and updates. Although for SNNs there exist unsupervised learning methods such as 

Hebbian learning and STDP, there are currently no supervised training methods for SNNs that 

https://en.wikipedia.org/wiki/Canadian_Institute_for_Advanced_Research
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outperform the second-generation non-event-driven networks. Spike trains are not differentiable, 

therefore typical gradient descent cannot be employed, either as one cannot maintain precise 

temporal information in spike trains. Therefore, to properly use SNNs for real-world classification and 

artificial intelligence, better supervised learning methods with higher classification accuracy need to 

be developed as well. Using the exact time of pulse occurrence, a neural network can employ more 

information and offer better computing properties. The SNN approach produces a binary output 

instead of the continuous output of traditional forward non-spiking DNNs (classical ANNs). The direct 

spike- based methods for training are either unsupervised methods with signals localized to one 

synapse such as Hebbian learning and STDP (Spike-Timing-Dependent Plasticity) for SNNs or 

optimization based, supervised ones.  However, to date, supervised learning algorithms utilized in 

SNNs are much less accurate than, for instance, the well-established back-propagation methods from 

classical “ANNs” due to the errors in the weight-updates. Referring to the latter, this error originates 

from inherent noise in the employed nanodevices, and thus the weight- control and adjustment is 

aggravated.  Another problem is that the current networks are rather shallow, less powerful and an 

extension to large scale might be difficult. For instance, a current state-of the are direct spike-based 

example achieves 95% classification accuracy on a MNIST dataset[138] a STDP two-layer network with 

6400 output neurons which is still lower than classical ANN models with standard backpropagation 

methods ([139] pp. 318-362). However, recent works show improvement from that side as well, such 

as using a “gradient based inference method” to achieve up to 99.59% accuracy for a MINST dataset. 

When the same algorithm is applied to other datasets for classification tasks such as  SVHN or CIFAR-

10  (both used for image recognition) it is close to other approaches which use ANN-SNN systems for 

instance [138], [140] or spatiotemporal backpropagation [141]. Compared to the classical approach it 

is only  0.5-1.5 % lower now [28], [142]. Additionally, one way to overcome some issues of above 

learning, would be to allow the learning with the imperfect, dynamical and noisy nanodevices at hand, 

that is to allow for unsupervised learning as there the information flow is highly unconstrained. Hence, 

it is less sensitive to system errors and imperfections in the respective neuromorphic hardware devices 

[143], [144].   

Despite that progress from the algorithm side, the (required) nonlinear behaviour of existing 

neuromorphic hardware implementations do not allow for a converging backpropagation. Thus, along 

with new hardware implementations such as k-NET, new algorithms need to be found to circumvent 

this issue such that SNNs outperform the ANNs of today in all means.  Typical low-level realizations of 

SNNs exhibit a limited capacity for complex operations and training deep SNNs is a challenging task 

which has not succeeded to date.  

Consequently, applying k-NET in form of a classical forward DNN with backpropagation and supervised 

learning is the most straightforward approach to start the integration of k-NETs disruptive approach 

into the neural networks of the future. In order to have a comparison for classification with the 

alternative technologies, we give a short, exemplary overview on classification tasks perform with 

other platforms for neuromorphic computing. For more information, we refer the interested reader to 

the references and references therein.  

7.2. Classification tasks accomplished with different hardware approaches:  

7.2.1. CMOS 
Neuromorphic systems employing CMOS technology can be implemented in a fully digital or mixed 

digital-analogue manner. Specifically, the core-to-core interconnects utilize digital CMOS logic where 

the neurosynaptic core can also be analogue or mixed. Digital neurons can be realized by CMOS logic 

circuits as well whereas the analogue parts follow either a design based on sub-threshold current-

mode or above-threshold circuits [57]. These systems utilized different learning platforms to perform 

the classification of handwritten digits, for instance [45]. As the oldest technology numerous 
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classification tasks have been performed with CMOS based technology and based on Si-CMOS 

technology several large-scale architectures which integrate more than 1000 neuron were built. 

Correspondingly these machines were utilized to perform various types of classification tasks or 

generally different types of learning algorithms were tested mostly with CMOS or with CMOS/Hybrid 

CMOS/memristive platforms. (cf. Table I). Other  machines on large-scales are Dynap-Se or Odin ([44], 

[57], [145] and references therein) . Additionally, there are also small-scale approaches as well.  

 

Table 1: Overview on large and small scale mainly CMOS based architectures and their efficacy for specific classification takss 

including the utilized CMOS technology and energy consumption. The classification tasks are mainly handwritten digits or 

image recognition. More information can be found in the given references and references therein.   

Neuromorphic Chip Technology 
/Company 

Neuron 
density  

Synapses & 
Energy 
consumptio
n 

Classificatio
n tasks 
performed 
(exemplary, 
c.f. Refs as 
well) 

SpiNNaker[146] Digital, 130 nm 
CMOS, efficient 
simulation large 
spiking networks  
(University of 
Manchester) 

109  spiking 
neurons 
approaching 
brain 
complexity 

100 
nJ/neuron & 
43 
nJ/synapse 

Spinnaker 2 
prototype, 
DNN: 
Handwritten 
digits 
dataset 
MINST : 96.6 
%[147] 
Audio 
sample 
classification 
: 85 % [148] 

TrueNorth[30] Digital CMOS, 28 
nm process 
technology IBM 

4096 
neurosynapti
c cores 
(106 neurons) 
[44], [57], 
[145] 
Leaky 
integrate and 
fire in each 
core 

256 M 
synapses, 26 
pJ/synaptic 
operation 

Real-time 
classification 
EEG data 
[149]  
Handwritten 
digits & 
Protein 
secondary 
structure 
recognition 
[150] 

Loihi[151] 
 

Digital, 14 nm 
(FinFet ) process 
CMOS, Intel  

130 ⋅ 103 
neurons 

130 ⋅ 106 
synapses 
81 pJ/neuron 
& 15 
pJ/synaptic 
operation 

Gesture 
recognition, 
89.64 % 
classification 
accuracy 
[152] 

Neurogrid[153]/Braindrop[154
] 
 

Mixed signal 28 
nm CMOS  

Up to 106 
neurons/4096 
neurons, 
64KB weight 
memory 

0.38 
pJ/synaptic 
update 
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BrainScaleS[155] Mixed digital 
analogue. 180 
nm (65 nm) 
CMOS first 
(second) 
generation 

180 ⋅ 103 
neurons 

40 ⋅ 106 
synapses per 
wafer 
10 pJ per 
transmit 

[156]Deep 
spiking 
neural 
network 

Analog VMM 180 nm NOR 
flash 

 6-bit Analog 
Synapse 
resolution 
20 
nJ/inference 

MNIST: 94.7 
%  
Image 
recognition 
CIFAR-10: 
84.8 % 

Other small-scale algorithms cf. [23] and references therein)   

Supervised DNN   
[157] 

ResNet: 
Backpropagatio
n with ReLU 
 

  CIFAR-10 
95.08 % 

Supervised SNN with transfer 
learning 
LeNet network[24] 

ConvNet Neuron 
with rate-based 
leaky integrate 
and fire neuron 

  MNIST 
handwritten 
digits 
recognition 
99.44 % 

Spike based 
backpropagation[158] 

Backprop with 
rate based 
integrate and 
fire neurons 

  MNIST, 
accuracy 
99.31%  

 

For instance, a network based on two SST re-routed NOR-arrays realized in a three-layer ANN showed 

94.7 % of classification fidelity within 1 µs and power consumption of 20 nJ per synaptic event but on 

the cost of increased cell-sizes due to the re-routing approach [56]. For more detailed information the 

reader may refer , for instance, to Ref. [23] and reference therein.  

7.2.2. SPINTRONICS 

Spintronic memristors 

Spintronic memristors have a strong potential for linear classification and associative memory 

operations since the non-volatile memory, i.e., memristive devices, need to provide almost infinite 

endurance and almost instantaneous response capabilities. These criteria are met by spintronic 

devices. 

For instance, memorization and pattern association could be demonstrated by using Hebbian learning 

on three kinds of 3x3 block patterns which converged after 20 iterations. In this work, spintronic 

artificial synapsed were combined with conventional electronics, where the first were comprised of 

SOT switching devices consisting of antiferromagnetic-ferromagnetic bilayers [159].  However, this 

field is in its infancy as well and still on the proof-of-concept level.  

Synchronized spin-torque nano oscillators.  

Using the spintronic based approach and reservoir computing methods, Romera et al. successfully 

demonstrated the classification of seven spoken vowels by a small network of four-coupled spintronic 

nano-oscillators. The training required less than 100 iterations with an accuracy of 84 % after cross-

validation, exceeding the performance of executing the same task with a multilayer perceptron 

network.   
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Although compact and low-power consuming, the oscillators in this approach need to be highly 

tuneable in frequency. The first results are promising but large-scale demonstration is yet to be 

realized.  However, one disadvantage of magnetic tunnel junctions are small fluctuations in the 

resistance which complicated the read-out [26].   

Superparamagnetic MTJs 

The stochastic temperature dependent state fluctuations of superparamagnetic MTJs resemble 

Poisson spiking dynamics and can be used to emulate neural population coding.  

Accordingly, that population coding and cascaded nonlinear operations with superparamagnetic MTJs 

were recently shown. That would, for instance, enable one to teach robots how to perform basic 

reactive movements such as grasping balls [160] while consuming substantial lower amounts of 

energy. That is 23 nJ (7.4 nJ) per operation during (after) learning compared to 330 nJ on CMOS based 

neurons.  

Domain Wall and Skyrmion based neurons. 

To date, there are only theoretical considerations and simulations that demonstrate that magnetic 

textures such as skyrmions can be used for reservoir computing and pattern classification, respectively 

[92], [93]. Similarly it accounts for DWs which could be used as domain wall oscillators- analogous to 

spin torque oscillator neural networks  or for secure hardware classification tasks [161]–[164].   

7.2.3.  LOW-DIMENSIONAL STRUCTURES 
As said, although promising, the current research of low-dimensional materials needs to yet be further 

explored on a fundamental research level and benchmarking, compact models and intense 

computational research are needed for nanoscale devices and future classification tasks.  Notably, 

most current approaches are at still at the hardware level implementation [20].  

 

7.2.4. Classification performed with memristor devices 
Although impressive results with respect to image classification [165], face verification [166] and 

speech recognition [16], [161], [167] were achieved using von-Neumann architectures, the latency and 

high power consumption are problematic. Since memristive devices inherently supply in-memory 

computing, are highly energy efficient and fast using Ohm’s or Kirchhoff’s law, they are emerging as 

an alternative, where RRAM and PCM are particularly advanced. In parallel, as the latter are also 

limited for up-scaling such as non-linearity (cf. section on memristive devices), new concepts with 

three terminal memristive devices such as ECRAM [168] or ionic floating gates [169] have been 

developed which partly overcome the aforementioned problems (c.f. Figure 5 as well).  

Crossbar architectures using DNNs were used for pattern classification both with RRAM and PCM based 

memristor units [35], [36], [169]–[172]. For instance, a crossbar array of 165000 PCM devices with a 

1T1R (one transistor-one resistor) structure and implementing a three-layer DNN demonstrated image 

classification [35].  After the training using the MNIST database, the network achieved image 

classification with an accuracy of 83% due to the mentioned drawbacks of PCMS, that is asymmetry or 

nonlinearity of the PCM response [170]. An alteration of the synapse allowed to increase the accuracy 

of MINST classification to 92% [171] and grey-scale face classification from the Yale database with 

91.5% accuracy. Using a 4kbit HfO_2 RRAM array with a novel programming scheme led to a maximal 

classification accuracy of 83% but simulations show accuracies >90% are possible.  

SNNs encode the information in spikes, where a spike can represent the input signal by a real-valued 

signal (rate-encoding) or via the spike’s latency (temporal coding) [23], [29]. The correlations between 

pre- and post-spike neuronal events are used to update the synaptic weights using a plasticity rule 

based on ‘’Hebbian Learning” which can be modulated by error feedback. The synaptic weight 
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decreases in long-term depression (LTD) and increases for long-term-potentiation. The currently 

leading plasticity rule for SNNs, STDP, is a based on the time difference between the post-and prespikes 

[173]–[176].  

Currently many SNNs are not able to perform on-chip learning but need to be pretrained off-chip first. 

This is due to the necessity of simultaneous access of all synaptic weights which increases critically the 

circuit overhead and hence the chip size. Despite this difficulty, both unsupervised STDP [177]–[179] 

and supervised STDP learning have been reported [180]–[182]. Possible applications such as data 

clustering or anomaly detection were discussed for an SNN, where the synaptic weights are updated 

by unsupervised STDP. The training of an ANN with a stochastic STDP was also shown, applied for the 

example of a visual pattern extraction utilizing RRAM based synapses. Additionally, by employing 

ferroelectric RAM (three terminal ferroelectric memristor), STDP supervised learning could be 

demonstrated [183]. A detailed comparison of off-chip unsupervised STDP and backpropagation for 

different memristor types and learning algorithms proves that STDP is by orders of magnitude more 

energy efficient than neural networks, as ~ nJ for the first and ~µJ for the latter [184] (and references 

therein).  A memristor perceptron was trained to classify a stylized letter pattern with a memristor-

based neuromorphic chip using different approaches such as ex situ or in- situ training [185], [186].   

Limited reliability such as fatigue in ferroelectric RAM [186] or necessity of current control during set 

transition to avoid an uncontrolled growth of the conductive filament in RRAM [187] or sneak paths 

limiting the operation in crossbar arrays [188] render pure memristive devices for neuromorphic 

computing currently limited.  

7.2.5. Hybrid CMOS-memristor devices for classification tasks  
Alternatively, to overcome above limitations and realize large-scale neuromorphic circuits, hybrid 

CMOS- memristor devices are a promising route where the memristive devices is integrated into the 

end of a CMOS process (cf. Ref. [23] and references therein). For instance, using SNN with RRAM-CMOS 

synapses the pre-neuron can drive a large synaptic fanout using digital CMOS buffers and voltage 

waveform engineering is used to transfer the latency between pre- and post-spikes [23], [51], [189]. 

The former can then be applied in transfer learning for inference applications. Among others, current 

hybrid architectures are op-amp based neuron designs [190], [191] or even driven leaky integrate and 

fire neurons in 180nm CMOS technology which drove RRAM cross point arrays with in-situ STDP 

learning [192], [193].  

Transfer learning, i.e., DNN to SNN conversion, allows one to initialize SNNs and use pretrained models 

at the input. The highest obtained accuracy with transfer learning is 99.44 % for a MNIST handwritten 

digits dataset [24],  while DNN yields 99.79% classification accuracy[23], [194].      Detailed tables with 

training accuracy of hybrid CMOS-memristor approaches can be found in Ref. [23] and references 

therein. To overcome the accuracy gap between semi-supervised SNNs and DNNs using 

backpropagation, recently also spike based propagation training methods are also under intensive 

investigation [195]. However, as backpropagation emerged from classical von-Neumann architectures 

the old issue of latency and high-power consumption are back on stage. Thus, backpropagation suffers 

from weight-transport problems as the transpose of the weight matrix between the lth and the l+1 

level must be available, nonconcurrence, high required precision of the derivatives in the 

backpropagation computation and the problem of assigning the temporal credit. OxRAM with 130 nm 

realized in a 2Kb differential RRAM are an example for a large-scale integration and on-chip inference 

employed for different datasets [196]. A similar RRAM ut using an FPGA back-end demonstrated a 

MNIST accuracy of 94.4 %   [197] and TaOx/HfO2 RRAMs with 130 nm CMOS showed 96.5 % accuracy 

[198].  
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7.2.6. Classification tasks with Photonics 
Although comparably complex, photonic reservoir-based computing approaches have been used for 

first demonstrations of classification tasks. For instance, spoken digits could be classified with a single 

optoelectronic modulator and an optical fibre and a reservoir computer based on light-modulators was 

employed to perform the recognition of human action by computer vision [199], [200].  

By using a photonic neural network, tasks such as audio or image classification, nonlinear optimization 

or neuroscientific hypothesis testing have been already demonstrated with recurrent, feed-forward 

and spiking and feed-forward neural networks respectively[60], [65], [108], [201].   

Compared to other approaches for neuromorphic computing the interconnectivity and linear 

operations of photonic based networks are their biggest asset. However, the interconnectivity is still 

achieved in real space opposite to k-NET and photonic based neuromorphic computing is facing several 

challenges to date.  One promising approach uses scalable silicon based photonic platforms, but these 

platforms do not currently can generate light on-chip. This renders the required co-packaging of 

electronics and light-sources critical for the efficiency, scalability, and stability and in the end energy 

consumption of the photonic neural networks. Furthermore, resonance trimming to counteract 

environmental variability  in integrated photonics due to the built-in resonant devices is necessary and 

enhance the systems complexity (Ref. [25] and references therein) . Additionally, building blocks such 

as logic gates or memory are still lacking for (pure) photonic platforms, which is realizable with 

magnonics and k-NET on the contrary.  

8. Conclusion on report for deliverable 4.1 and classification 

directives for k-NET 
 

In summary, we have given an overview of the state-of the art on alternative (mostly hardware-based) 

platforms for neuromorphic computing and artificial intelligence for the industry 4.0. Furthermore, it 

contains an overview on the performed classification tasks with the different alternative technologies 

and a discussion on the general advantages of magnonic based approaches and in particular k-NET. 

Although the technologically most advanced approaches for neural networks based on CMOS and 

CMOS-memristor hybrid platforms demonstrated classification accuracies >99% for specific tasks such 

as handwritten digits recognition, the circuitry remains complex and still required substantial energy 

amounts. 

As stated in the beginning, this report represents the Deliverable 4.1 of work package for under the 

lead of Thales at month 12 of the k-NET project. 

As stated earlier, due to the unique operation in wavevector space,k-NET inherently does not require 

wiring between neurons and synapses. The neurons and synapses in k-NET correspond to the spin 

wave mode amplitudes (populations) and to the nonlinear interactions among them, respectively. 

These nonlinear interactions will result in a time dependent evolution of k-NET neurons. Hence, 

contrary to a feedforward (deep) neural network there is no clear one-way propagation path and then 

the system will be inherently recurrent as well.  For example, a given input mode population may not 

only be affected by the input signals, but also subsequent spin-wave scattering processes. As a result, 

energy therefore flows in and out of these modes in a complex way, until a readout is made. 

Consequently, that inherent properties of k-NET will impose some bounds on the training techniques 

that one could use.  

Being only one type of imaginable neural network, k-NET could be classified as a Hopfield-like device.  
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Hopfield type neural networks are recurrent ANNs which are typically used for auto-association and 

optimization tasks.  

Additionally, note that- at this stage- we anticipate that the k-NET concept will be useful for classifying 

tasks for which information is naturally encoded in frequency space. For example, we can envisage 

greatly extending the vowel recognition task of Romera et al., where formants, i.e., resonant 

frequencies of the vocal tract that characterize a particular vowel, are used as inputs to a spin-torque 

nano-oscillator array. In the k-NET device, these frequency inputs can be mapped onto specific spin 

wave mode populations, whose nonlinear interactions would lead to distinct output states of the 

magnetic system. Because the ferromagnetic element used possesses a greater number of accessible 

states (N >> 4) in comparison to an oscillator array, we anticipate that classification schemes can be 

applied to datasets with large number of members.   

We must emphasize that vowel recognition is an excellent and widely used toy problem to test 

neuromorphic computing models with emerging devices. Furthermore, employing vowel recognition 

as a test problem, allows a straightforward approach to benchmark our results against literature work. 

While a central goal of the project is demonstrate such a toy problem, we expect that k-NET devices 

will be scalable to larger sizes and / or interconnected to form complex processing pipelines. These, 

eventually, should excel in complex recognition tasks. For instance, one utility of the spin wave neural 

network is the capacity to process GHz-rate signals “natively” without too much pre-processing. In this 

light, one could also think about applications such as feature detection in radar data (e.g., autonomous 

vehicles).  

However, one must also not that there are numerous nonlinear spin wave processes that involve clear 

thresholds which might mimic integrate-and- fire behaviour. Thus, at this stage of the project a possible 

realization of the K-NET conjuncture as a SNN has to be considered, either. The involvement of 

thresholds determines a specific energy regime for onset the nonlinear spin wave interactions, i.e., 

scattering processes. If the system is driven in a clocked manner, the (multiple) spin wave scattering 

processes result in an energy redistribution of the spin wave modes, that is k-NETs neurons such that 

the system falls again below the critical threshold and needs to be ‘pumped’ above with the next 

incoming signal. Such functionality would exhibit some analogies with leaky integrate and fire 

behaviour of SNNs.   

In combination with the given overview on the state-of the art of alternative technologies of k-NET and 

their classification tasks and the previous discussion shows what are the current limitations of the 

other technologies and that K-NET has the potential to be possibly used in different types of neural 

networks which widens the area of application of k-NET wavevector spaced approach. Hence, it could 

be indeed a game changer which needs to be further classified in the future and will be part of the 

deliverable D 4.2 at month 18.  
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